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Abstract

The aims of the present thesis are to give a concrete description, in the modern

language of arithmetic-algebraic geometry, of the Galois theory of Alexander

Grothendieck (and the later generation of topos theorists: Micheal Barr, Radu

Diaconescu, Peter Johnstone, and Ieke Moerdijk) in the context of the category

of semirings, and to calculate the étale fundamental group of the spectrum of a

number of semirings including: B, N, and R+.

In SGA I Grothendieck developed his Galois theory of schemes by classifying

the subcategory of locally constant schemes as the category of finite G-sets for

some group G — this theory is analogous to both the realization that the category

of covering spaces of a topological space X is equivalent to the category of π1(X)-

sets, where π1(X) is the fundamental group of X, and the Galois theory of finite

extensions of a field. Grothendieck himself suggested that this idea should hold

in a broader context — for him, this meant the context of toposes. Indeed,

later generations of topos theorists proved him correct. It is this theory that

we are to apply to the category of affine N-schemes in order to define the étale

fundamental group of (the affine N-scheme corresponding to) a semiring — this

theory extends Grothendieck’s Galois theory of (schemes) rings to the broader

category of semirings.
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Chapter 1

Introduction

1.1 Geometry of the Natural Numbers

In this thesis the main objects of consideration are algebraic structures called

semirings. These objects are the abstract algebraic axiomatization of the basic

arithmetic we were taught at school; that is to say, they are derived from the

arithmetic of the non-negative integers N := {0, 1, 2, 3, . . . } which we call the

natural numbers. Indeed, the natural numbers are the foundation for all other

systems of arithmetic. All of the commutative rings of algebraic number theory

are derived from the natural numbers; the integers are derived from the natural

numbers, and the rational numbers are constructed from the integers. Further

constructions yield the finite fields, p-adic numbers, and the field of complex

numbers. Due to this foundational role of the natural numbers and the axioms of

semirings in constructing the basic objects of algebraic number theory it seems

right to treat them on the same footing as the more arithmetically well understood

algebraic objects, namely rings. In particular the extremely fruitful geometric

perspective of ring theory should be extended to semirings.

Further to this observation of the foundational role of semirings in our under-

standing of ring theory and higher arithemtic, we now see semirings being used in

sophisticated ways to attack deep problems in mathematics. Alain Connes and

1



2 CHAPTER 1. INTRODUCTION

Caterina Consani have made extensive use of tropical algebra, tropical geome-

try, and semirings in their work relating to the Riemann Hypothesis [15, 16, 17].

Tropical geometry is proving to be very influential in classical algebraic geometry

by providing new insights and new proofs to old theorems [37]. Semirings, in

particular the tropical semiring, play a foundational role in this area. Jeffery

and Noah Giansiracusa, motivated by the theory of schemes in classical algebraic

geometry, developed a theory of a tropicalisation of a scheme in order to better

understand tropical algebraic geometry [19]. This theory of tropical schemes has

been investigated further by Diane MacLagan and Felipe Rincón in [36]. Thus it

is not only for the sake of applying Grothendieck’s geometry of arithmetic to our

complete understanding of arithemtic, but a real sense of utility for the broader

mathematical community that we approach the arithmetic-algebraic geometry of

semirings.

Arithmetic Geometry

Algebra and geometry have interacted prolifically throughout the history of

mathematics. Algebraic geometry in the modern sense really began with the work

of Richard Dedekind and Heinrich Martin Weber in the algebraic formalization of

Bernhard Riemann’s ideas relating to algebraic functions of one complex variable

[39]. In their ground breaking paper Dedekind and Weber formulated a duality

connecting algebraic information on the one hand and geometric information on

the other. In particular they proved (in the language of today) an equivalence

between a certain category of Riemann surfaces and a category of particular

algebras over the ring of rational functions in one variable. It is interesting to

note the work of Dedekind–Weber was the first formal description of Riemann

surfaces, as the analysts only came to grips with them much later when the

structure of a manifold was understood. Of particular relevance to the topic of

the present thesis is the fact that Dedekind-Weber had all but proven the category

of compact Riemann surfaces over P1
C is equivalent to the category of finite étale

algebras over C(t). Precisely, they had shown that each compact Riemann surface
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can be recovered from its ring of rational functions in one variable — it was this

method of constructing a ring from a geometric object and the reconstructing of

the geometric object from the ring that was the key insight that sparked algebraic

geometry.

This idea, present in the work of Dedekind–Weber, gave the first concrete

glimpse of the modern duality between geometric concepts — compact Riemann

surfaces — and algebraic concepts — algebras over C(t). In the years 1880 – 1955

many of the greatest mathematicians of the day worked on understanding and

extending these ideas. André Weil, motivated by the growing realization that

algebra and geometry are two sides of the same coin and the will to understand

equations not over C, but over finite fields Fq, rewrote the foundations of algebraic

geometry so as to include equations over finite fields [43]. Weil’s understanding

of the analogy between algebra and geometry was communicated vividly in a

letter he wrote to his sister Simoné Weil [44]. In this letter Weil describes an

analogy between three seemingly distinct languages; number fields, function fields

over finite fields, and compact Riemann surfaces — this analogy between the

three theories has been named Weil’s Rosetta Stone due to its similarity with

the Rosetta Stone found in Egypt which connects three ancient languages. This

provided a belief that number fields should have some geometric behaviour just as

algebras over C(t) (Dedekind–Weber) and finite fields (Weil) both have geometric

realizations.

It was Alexander Grothendieck — with the help of Jean Dieudonné, Jean

Pierre Serre, Pierre Deligne, and a number of other students at the Institut des

Hautes Études Scientifiques — that formulated the precise duality between all

commutative rings with unity and the category of geometric objects Grothendieck

called affine schèmas ; which was later translated into English as affine scheme.

This theory was presented in Volumes I - IV of Éléments de Géométrie Algébrique

(which we will here after refer to as, EGA)[23]. Grothendieck’s theory of schemes

has provided algebraic geometers with the complete dictionary between the al-
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gebra of commutative unital rings and geometry. Moreover, it has provided al-

gebraic number theorists with a precise language with which they can interpret

Weil’s Rosetta stone — in this way Grothendieck provided us with the geometry

of arithmetic.

Arithmetic Geometry over the Natural Numbers

Through the work of Dedekind–Weber, Weil, Grothendieck, and many oth-

ers we now have a precise language with which we can express the geometry of

commutative unital rings. It is clear from the work of Dedekind–Weber that

this perspective was immensely helpful for geometers; they were the first math-

ematicians to give a concrete description of Riemann surfaces. Unsurprisingly

the duality has also been of great utility to algebraists and number theorists; Os-

car Zariski addressed the International Congress of Mathematicians in 1950 with

the following remark on the utility of the geometric perspective in commutative

algebra

“It is undeniably true that the arithmetization of algebraic geom-

etry represents a substantial advance of algebra itself. In helping ge-

ometry, modern algebra is helping itself above all. We maintain that

abstract algebraic geometry is one of the best things that happened to

commutative algebra in a long time.”

Note this was stated before the theory of schemes was developed. In light of

this service of the theory of schemes to the theory of commutative algebra, we

should extend the theory of schemes beyond the category of commutative unital

rings to the category of commutative unital semirings in the hope of yielding

similar insight on the broader theory of semirings. When faced with the task of

developing the theory of affine schemes for semirings one has two obvious paths

to take when building the foundations of the subject; do we build the theory

on the spectrum of prime ideals and locally ringed spaces? Or, do we take as

foundational the functor of points?
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Some authors have begun to explore the geometry of semirings from the per-

spective of Zariski-type topological spaces whose points consist of prime ideals

or prime congruences. Jaiung Jun’s PhD thesis studied, among other objects,

semischemes which are locally ringed spaces that are patched together locally

from affine semischemes [28]. These affine semischemes are locally ringed spaces

whose underlying topological space consists of points corresponding to prime ide-

als of a semiring and whose topology and structure sheaf is exactly analogous to

that of the spectrum of a commutative unital ring as found in EGA. In a later

paper Jun recovers the theory of the Cech Cohomology for such objects [29]. In

a series of three papers Paul Lescot lays foundations for the algebraic geometry

of characteristic one semirings using prime congruences [32, 31, 33]. He shows

that this space is different to the topological space defined using prime ideals.

Another approach to the geometry of semirings is that of Oliver Lorscheid’s blue

schemes as described in [34, 35].

In 1973 Grothendieck presented a colloquium in which he advocated for the

original (topological space of prime ideals) presentation of scheme theory to be

abandoned as foundational, in favour of the functorial definition [21]. He stated

that any of the “extra baggage” could be extracted later if need be. In their

paper “au dessous Spec(Z)” Betrand Toën and Michel Vaquié presented a theory

of schemes for commutative monoid objects in a symmetric monoidal category; in

the case the monoidal category is the category of commutative monoids one ob-

tains the category of commutative unital semirings [41]. Following Grothendieck

and Toën-Vaquié we will define an affine N-scheme to be a representable functor

from the category of semirings to the category of sets. From this perspective

an application of the Yoneda lemma gives us the duality between semirings and

affine N-schemes almost for free — this is one of the main advantages to setting

up the foundations with functors to sets; the realization of the space dual to a

semiring is a simple result of category theory.

With the geometric objects at hand, one can begin to ask: how much of the
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work of Grothendieck carries over to this category of affine N-schemes? What

are the counterparts of Éléments de géométrie algébrique (EGA), Séminaire

de géométrie algébrique (SGA), and Fondements de la Géometrie Algébrique

(FGA)? In Copenhagen during the summer of 2016 (one year after this project

had started) Alain Connes and James Borger discussed questions such as these1.

In particular, they wondered how Grothendieck’s theory of the étale fundamental

group could best be extended to semirings - More precisely extended to some geo-

metric object associated to a semiring. In short, due to Grothdendieck’s category

theoretic style, one should believe that all of the work in the documents above

have natural analogues in the broader world of N-schemes. However this does not

tell us how the theories actually work. It is the aim of this thesis to provide a

concrete description of Grothendieck’s theory of the étale fundamental group (i.e.

the content of SGA I) in the broader context of affine N-schemes with a language

familiar to the modern arithmetic-algebraic geometer, and present the necessary

algebraic geometry of affine N-schemes required to make such a theory possible.

In the next section we will revisit the fundamental group of a topological space

and explain the manner in which Grothendieck reframed the theory so as to make

it amenable to the context of schemes.

1.2 Étale Fundamental Groups

Algebraic topologists developed the theory of the fundamental group of a topo-

logical space X — denoted π1(X, p) — using the notion of homotopy equivalence

classes of loops starting and ending at a point p ∈ X. This provided topologists

with a bridge between topological spaces and group theory, thus allowing them

to reframe previously intractable problems into the language of group theory,

where the problem (hopefully) becomes a lot clearer. Incidentally, this bridge

has also helped group theorists attack a number of problems in group theory by

1This is commented on further in Remark 4.4.
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interpreting their problems geometrically/topologically — in much the same way

that schemes have helped commutative ring theorists.

SGA 1 contains Grothendieck’s formulation of the fundamental group in the

context of schemes [22]. In order for him to associate a fundamental group to

a scheme he needed to reframe the definition in a manner free from the use of

loops2. Whether one chooses to use the functorial point of view that we are

taking, or the spectrum of prime ideals, it is not at all clear what a loop in a

scheme should be. Happily it was well known that the fundamental group of a

topological space could be realised as the group of automorphisms of the universal

cover X̃ which permuted fibers above each point p ∈ X — these automorphisms

are known as deck transformations. If Y is another covering space of X the group

of deck transformations of Y over X is isomorphic to a quotient of π1(X, p) by

some subgroup H ≤ π1(X, p). Finally, this action of π1(X, p) on the collection

of covering spaces of X commutes with morphisms between covering spaces —

that is to say, the action of π1(X, p) is functorial. It took Grothendieck to realize

that these facts could be pieced together to show π1(X, p) is isomorphic to the

automorphisms of the functor which pulls back the category of covering spaces

over X to the category of covering spaces of the point p ∈ X. In this way

Grothendieck reduced the problem of defining a fundamental group for schemes

to the problem of defining “covering spaces” of schemes — his solution to this

problem was the notion of a finite étale morphism of schemes — and the matter

of defining the correct notion of point to pull-back to. Grothendieck referred

to this automorphism group as the étale fundamental group of a scheme. Note:

the category of covering spaces over a point is equivalent to the category of sets.

This means that the functor which pulls back to the fiber over a point can be

considered a functor from the category of covering spaces of X to the category of

sets.

2This is typical of much of Grothendieck’s generalizations of concepts from other parts of

mathematics; reframe the idea in a manner amenable to interpretation in the language of

category theory and use that as the definition.
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It was understood that the relationship between the covering spaces of a con-

nected topological space and subgroups of its fundamental group resembled the

relationship between field extensions and Galois groups defined by the fundamen-

tal theorem of Galois theory. With his theory of the étale fundamental group,

Grothendieck was able to provide Galois theory with the geometric interpreta-

tion required to realize this resemblance in a concrete manner. We will see how

exactly how this happens later in the thesis.

1.3 Galois Categories

At the heart of Grothendieck’s reformulation of the theory of the fundamental

group is a neat category theoretic presentation. We now know that a fundamental

group can be associated to a pair (C,F), where C is a (small) category and

F : C → sets is a functor from C to the category of finite sets, sets, such that

the pair behave according to the axioms of a Galois category. This statement of

the axioms of a Galois category is translated directly from Grothendieck [22].

Definition 1.1 (Galois Category). Let C be a category and F a covariant functor

from C to sets, the category of finite sets. We say that C is a Galois category

with fundamental functor F if the following six conditions are satisfied:

(G1) There is a terminal object in C, and the fibred product of any two objects

over a third one exists in C.

(G2) Finite sums exist in C, in particular an initial object, and for any object in

C the quotient by a finite group of automorphisms exists.

(G3) Any morphism u in C can be written as u = u′u′′, where u′′ is an epimor-

phism and u′ a monomorphism. Moreover, any monomorphism u : X → Y

in C is an isomorphism of X with a direct summand of Y .

(G4) The functor F transforms terminal objects into terminal objects and com-

mutes with fibred products.
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(G5) The functor F commutes with finite sums, transforms epimorphisms into

epimorphisms, and commutes with passage to the quotient by a finite group

of automorphisms.

(G6) If u is a morphism in C such that F(u) is an isomorphism, then u is an

isomorphism. We call such a functor conservative.

Many of the familiar properties of the profinite completetion of the funda-

mental group of a (sufficiently) connected topological space (resp. the absolute

Galois group of a field F ) arise from the fact that the (resp. opposite) category

of finite covering spaces (resp. finite étale algebras over F ) behave according to

the above list of axioms; in particular, the fact that the profinite completetion

of the fundamental group (resp. absolute Galois group) is a profinite group can

be deduced from the above axioms alone separate from the particular context.

Independence (up to isomorphism) of the choice of base point can also be proven

from the axioms of a Galois category, where the fundamental functor acts as the

choice of base point. In order to obtain the full fundamental group of a topo-

logical space, one can consider all covering spaces (infinite covers included) and

the corresponding notion of “Galois category” for such covers — however we will

only consider finite covers.

As a result of the abstraction of the core principle behind Galois theory to the

realm of category theory, mathematicians have been able to give specific types of

categories which have the above properties. Alexander Grothendieck mentioned

in Exercise 2.7.5 of [SGA IV, Expose iv, 1971] that his theory of the fundamental

group of a scheme will work for the category of locally constant objects of an

appropriately connected topos. Peter Johnstone has the details of this work

spelled out in Section 8.4 of Topos Theory [24]. Thus it is well known that such a

category of locally constant objects should behave like a Galois category — Galois

topos. Furthermore, the Galois theory of toposes has been studied and extended

by the following authors: Barr [4, 5]; Barr and Diaconescu [6]; Bunge [12]; Bunge

and Moerdijk [13]; André Joyal and Myles Tierney [27]; John Kennison [30],
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and; Oliva Caramello [14]. In light of this work Galois theory and the theory

of the fundamental group is now well understood in the context of toposes. In

particular, it is understood that one should get a well behaved Galois-type theory

by considering a category of locally constant objects. Therefore, before we even

start, we know that our aim is attainable; by defining a topology on the category

of affine N-schemes and looking at the subcategory of affine N-schemes that are

locally constant, we should — by the work cited above — obtain a Galois category

and hence a Galois group. Moreover, with the correct choice of topology this

Galois theory of affine N-schemes will recover Grothendieck’s theory in the case

that the affine N-schemes are the spectrum of a ring.

It should be stated from the outset that the aim of this thesis is to describe

the Galois theory of a (topos of objects over a) semiring in terms similar to the

geometric exposition of the school of Grothendieck - rather than in the language

of topos theory. Moreover, the research of the authors above suggest that this

theory will work as it is but an example of their topos theoretic formalization of

Galois theory. Since the Galois theory of toposes is well understood we know in

advance that we will arrive at a sound theory; it is the exposition in terms of

the particular language of semirings that is novel, rather than the existence of

such a theory. Furthermore, this thesis will provide the original calculations of a

number of fundamental groups of concrete semirings and discuss the relevance of

these groups with respect to the category of affine schemes over Z.

In the second chapter of the present thesis we present the definition a semiring

and elaborate on a number of the key properties and concepts relating to the

algebra of semirings. In the third chapter we give our definition of affine N-

scheme and consider the geometry of affine N-schemes. Of note in the third

chapter is the Section 3.4 which considers the passage to positive subsemirings

in a geometric manner, as glueing “positivity data” to affine schemes over Z. In

chapter four we define what we mean by a finite étale morphism and the étale

fundamental group of an affine N-scheme. In the penultimate chapter we calculate
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the étale fundamental group of a number of affine N-schemes. In the final chapter

we consider some of the reasons for the results obtained and explore a number of

directions for further research.



Chapter 2

Abstract Algebra of Semirings

Semirings are the focus of this thesis. In the present chapter we introduce semi-

rings, study their first properties, and consider a number of examples of semirings.

Together with some category theory, the definitions and examples of this chapter

will give us a platform from which we can study the geometry of the natural

numbers — that is, scheme theory over the natural numbers.

2.1 Semirings: Definitions and Examples

Semirings are abstract objects. However they encode the most basic structures of

arithmetic; addition and multiplication of whole numbers. In order to do addition

and multiplication all one needs is a collection of things (that is, a set) which

one can add and multiply together. Thus the definition that follows provides the

fundamental framework in which one can do arithmetic.

Definition 2.1. A semiring is a 5-tuple (R,+R, ·R, 0R, 1R) which consists of: a

set, R; associative binary operations +R : R × R → R (which we refer to as

addition) and ×R : R × R → R (which we refer to as multiplication) with the

following properties

• ∀a, b ∈ R a+R b = b+R a [Addition is commutative]

• ∀a, b ∈ R a ·R b = b ·R a [Multiplication is commutative]

12
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• ∀a, b, c ∈ R a ·R (b + c) = a ·R b +R a ·R c [Multiplication distributes over

addition];

and, distinguished (not necessarily distinct) elements of R, 0R and 1R, such that:

∀a ∈ R a+R 0R = a, 0R ·R a = 0R, and a ·R 1R = a.

The distinguished elements 0R and 1R will be referred to as the additive and

(resp.) multiplicative identities of the corresponding semiring.

Remark 2.2. One should note that there are some differences in definitions

throughout the literature on semirings. For instance, some authors do not require

semirings to have the distinguished elements 0R or 1R. Similarly, some authors

do not require the binary operation of multiplication to be commutative. In this

thesis we are primarily motivated by arithmetic (number theoretic) topics, and

here most of the semirings that arise are commutative. Indeed, we will only

consider unital commutative semirings — that is, semirings with commutative

multiplication and a multiplicative identity.

Remark 2.3. Many of the definitions in this thesis come from Johnathon S.

Golan’s text Semirings and their Applications. In this text Golan presents the

theory of semirings (including noncommutative semirings) and a number of their

applications [20].

We will make liberal use of the following abuses of notation: a semiring will

be denoted by its set, often leaving the binary operations +R and ·R as implied

and the subscripts on +R, ·R, 0R, and 1R will be dropped.

Example 2.4. The natural numbers, N := {0, 1, 2, 3, . . . } with their standard

addition and multiplication form a semiring.

Example 2.5. If R is a semiring in which 0R = 1R, then every element of the

semiring is equal to 0R. In which case we say R is the zero-semiring. We will

denote the zero-semiring by 0.
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Example 2.6 (Ring). One may define a ring as a 5-tuple (R,+R, ·R, 0R, 1R) such

that (i) the 5-tuple forms a semiring, and (ii) ∀a ∈ R ∃b ∈ R such that a+b = 0R.

Thus, every ring is a semiring.

Again, one must remark that there are differences in the definition of a ring in

the literature. As before, one need not assume the existence of 0R, 1R, nor that

multiplication is commutative. However, in this thesis a ring will be as defined

in the example. Namely, commutative in both operations, with identities, and

existence of additive inverses. Indeed these conditions are required for usual

scheme theory, so in order to stay consistent with that theory we are required to

make this definition.

Definition 2.7 (Subsemiring). If R = (R,+, ·, 0R, 1R) is a semiring and S ⊆ R

is a subset closed under +, ·, with identities 0S = 0R and 1S = 1R, then we say

S is a subsemiring of the semiring R.

Example 2.8 (Positivity). One can find semirings within R by making use of its

natural order. Precisely, given any sub(semi)ring R of R, one can pick out the

positive (elements greater than or equal to 0) subset of R. This subset will form

a subsemiring of R. We will denote this subsemiring R+ := {r ∈ R | r ≥ 0}. For

example the subset of positive rational numbers, Q+, form a semiring. Moreover,

the natural numbers arise in this manner as N = Z+.

Example 2.9. The Boolean semiring, denoted B, is defined on the set {0, 1} by

declaring 1 + 1 = 1. Notice, every other addition and multiplication is already

defined by the axioms of a semiring. This seemingly unassuming semiring will

play a key role later chapters.

Example 2.10 (Tropical Semiring, T). In this example we define the tropical real

numbers which are appearing across mathematics with great effect; in particular

they are doing a lot of work, and provide a lot of promise, in algebraic geometry.

The process by which we arrive at the tropical real numbers T is often referred

to as Maslov dequantization [37].
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This process begins with the observation that, for each t ∈ R>0\{1}, the map

logt : R+ → R ∪ {−∞} does not form a homomorphism with the standard

operations on R ∪ {−∞}. However, we can force it to be a homomorphism by

letting it induce the following operations on R ∪ {−∞} — for each t ∈ R>0\{1}

x ⊕t y := logt(t
x + ty) and x ⊗t y := x + y. We note the element −∞ behaves

as expected; namely, for each y ∈ R ∪ {−∞} we define −∞ ⊕t y := y and

−∞⊗t y := −∞. This process determines a family of semirings (for each t ∈ R)

consisting of (R ∪ {−∞},⊕t,⊗t,−∞, 0).

This continuum of semirings depends on the parameter t ∈ R>0\{1}. One

might wonder: what is the semiring at infinity? That is, what happens in the

limit t → ∞. In order to see the behaviour in this limit, let us first observe the

following inequalities

max(x, y) ≤ x+ y ≤ 2 max(x, y).

In particular, for t ≥ 1

max(tx, ty) ≤ tx + ty ≤ 2 max(tx, ty).

Moreover, for each t > 1 the function logt is strictly increasing, therefore

max(x, y) ≤ x⊕t y ≤ logt(2) + max(x, y).

Now we can see that as t → ∞, logt(2) → 0 and x⊕t y → max(x, y). Therefore

we conclude that the limit of this family of semirings as t → ∞ is the semiring

T := (R ∪ {−∞},max( , ),+,−∞, 0). We note, for each x ∈ R ∪ {−∞} we

have max(x,−∞) = x and hence that −∞ really is the additive identity of

this semiring. We call this semiring the tropical semiring and henceforth denote

it T. In this context we may refer to max as tropical sum and + as tropical

multiplication. Note: the tropical numbers are often referred to as Rmax and

they have a number of sub-semifields arising from the additive sub-groups of

Z ⊆ Q ⊆ R which are explored in [42].



16 CHAPTER 2. ABSTRACT ALGEBRA OF SEMIRINGS

2.2 First Properties of Semirings

In this section we explore a number of the basic properties of semirings and

some of the ways to construct new semirings from old. This section consists of

definitions from Johnathon S. Golan’s Semirings and their Applications [20].

Definition 2.11 (Zero Sum Free). If R is a semiring such that ∀a 6= 0 ∈ R the

equation x+ a = 0 does not have a solution, then we say R is zero sum free.

If R is a non-zero ring, then R can’t be zero sum free. Zero sum free semirings

are often referred to as strict semirings in the literature.

Example 2.12. The natural numbers are zero sum free. Indeed, all subsemirings

of the reals of the form R+ (see Example 2.8) are zero sum free.

Definition 2.13 (Cancellative). We say that a semiring R is (additively) can-

cellative if for each a, b, c ∈ R, we have a+ b = c+ b implies a = c.

Note that a semiring is addtively cancellative if and only if it can be mapped

injectively into a ring. Zero sum free semirings can be cancellative — just as

being an integral domain does not imply the existence of multiplicative inverses.

Example 2.14. The natural numbers are cancellative. As are all R+ ⊆ R.

The following definition is the multiplicative version of the previous definition.

Definition 2.15 (Integral Domains). We say that a non-zero semiring R is an

integral domain if for each a, b, c ∈ R, and b 6= 0 we have a · b = c · b implies a = c.

Definition 2.16 (Semifield). If R is an integral domain, then we say R is a

semifield if for every a 6= 0 ∈ R, there exists an element b such that ab = 1.

If R is a semifield and a ∈ R such that there exists a b ∈ R where ab = 1,

then b is unique in this respect. As such, we will denote it a−1 := b. Moreover,

this relationship is symmetric in a and b.
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Definition 2.17 (Polynomial Semiring). If R is a semiring, then we can define

the semiring of polynomials with coefficients in R as follows

P :=

(⊕
N

R,+,×

)

such that for each u = (ui)i∈N and v = (vj)j∈N there exist elements s = (sk)k∈N

and t = (t`)`∈N

u+ v := s, where sk := uk + vk

u× v := t, where t` :=
∑
i+j=`

uivj.

If f = (fi)i∈N is an element of P we will denote it f(x) :=
∑

fi 6=0 fix
i, where

x is some choice of indeterminate symbol and (under this identification) we will

denote the semiring of polynomials with coefficients in R as R[x].

If R[x] is the polynomial ring over R in the indeterminate x, then we will

denote (R[x])[y] = R[x, y] and refer to it is as the polynomial ring in 2 inde-

terminate symbols over R. By induction we may similarly define the semiring

R[x1, . . . xn] of polynomials in finitely many indeterminate symbols. Moreover,

we may allow the case of infinitely many indeterminate xi with each polynomial

only being a sum of products of finitely many of them.

Example 2.18. If R is an integral domain, then R[x] (and, by induction

R[x1, . . . xn] for each integer n) is an integral domain.

If R,R′ are semirings, then the product set R × R′ with component-wise

operations forms a semiring, we call this the product semiring. In general if

(Ri)i∈I is any family of semirings indexed by a set I, we can form the product set

indexed by I and this will also form a semiring under component-wise operations.

Semirings of this form will be extremely important in the later chapters of this

thesis. In particular, we need to know how to recognise when a semiring can be

written in this form. The key ingredients are idempotent elements of semirings.



18 CHAPTER 2. ABSTRACT ALGEBRA OF SEMIRINGS

Definition 2.19 (Idempotents). If e ∈ R is an element of R such that e2 = e,

then we say that e is an idempotent of R. If e 6= 0 or 1, then we say that e is a

non-trivial idempotent of R.

If R is a ring, then the existence of a non-trivial idempotent is enough to prove

that R ∼= R1 × R2, for some non-zero rings R1, R2. However, the next example

shows this is not the case for semirings.

Example 2.20. The second octant in R2 i.e. A := {(x, y) ∈ R2
+ | y ≥ x} is

a semiring. This semiring has the non-trivial idempotent e := (0, 1). However

A does not decompose into a product of semirings. Intuitively, this is because

1 − e /∈ A. In fact, we know that this semiring does not have any zero-divisors,

therefore it can’t have any such family of orthogonal elements.

It is still true that a product of some finite number, n, of semirings contains

a family of n idempotents (ei)
n
i=1 which sum to the identity and multiply (in the

semiring) as eiej = δijei — these are the elements with a 1 in the i-th column

and 0 else where. We will see that the converse is also true.

Definition 2.21 (Connected Semiring). Let R 6= 0 be a semiring. If there exists

a finite set I such that |I| ≥ 2 and a family (ei)i∈I of non-trivial idempotents

in R with the following properties (i) eiej = δijei, and (ii)
∑

I ei = 1R, then we

say R is disconnected. If the only family of idempotents with properties (i) and

(ii) is {0, 1} and 0 6= 1, then we say R is connected. We will refer to a family of

idempotents with property (i) as being mutually orthogonal.

Definition 2.22 (Standard Idempotents). If I is a finite set indexing a family

(Ri)i∈I of semirings Ri, then the product
∏

i∈I Ri contains the family of idempo-

tents (ei)i∈I where ej = (δij)i∈I . We will refer to the family (ei)i∈I of idempotents

as the standard idempotents of the product
∏

i∈I Ri.

These are the often referred to as the standard basis vectors when each Ri = k

is a fixed field for every i ∈ I.
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2.3 Morphisms of Semirings

Since the introduction of category theory mathematicians have come to under-

stand that in order to understand an object X it is important to understand

objects which “relate” to X — that is, to understand the ambient category in

which X lives. In this section we define semiring homomorphisms, thus providing

the manner in which semirings relate to one and other and as such defining the

ambient category that we are interested in.

Definition 2.23. If R and S are semirings, then a semiring homomorphism

from R to S is a set map ϕ : R → S with the following properties: ϕ(x +R y) =

ϕ(x) +S ϕ(y); ϕ(x ·R y) = ϕ(x) ·S ϕ(y); ϕ(0R) = 0S; and, ϕ(1R) = 1S.

If ϕ : R→ S is a semiring homomorphism and there exists a semiring homo-

morphism ψ : S → R such that ψ ◦ ϕ = idR and ϕ ◦ ψ = idS, then we say that ϕ

(and ψ) is a semiring isomorphism. In this case we say S and R are isomorphic

and denote this relation S ∼= R.

Remark 2.24. If R is a ring, then ϕ(0R) = 0S can be derived from the other

properties of a ring homomorphism. This proof makes explicit use of additive

inverses and as such does not prove this property holds for such maps of semirings.

Indeed the existence of the morphism f : 0 → B where 0 7→ 1 proves that this

must be required in the definition.

Example 2.25. The set map ϕ : N→ B which sends 0 7→ 0 and for each x 6= 0,

x 7→ 1 is a semiring homomorphism. Moreover if R ⊆ R is a subsemiring of the

real numbers, then ϕ : R+ → B which sends 0 7→ 0 and non-zero elements to 1 is

a semiring homomorphism.

Theorem 2.26. If R is a zero sum free integral domain, then the map ϕ : R→ B

where ϕ(0) = 0 and for each non-zero x ∈ R, ϕ(x) = 1 is a semiring homomor-

phism.

Proof. Let x, y ∈ R. If (wlog) x = 0, then ϕ(x+y) = ϕ(y) and ϕ(x)+ϕ(y) = ϕ(y).

Also ϕ(xy) = ϕ(0) = 0 and ϕ(x)ϕ(y) = 0. Let us assume both x and y are non-
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zero. In this case, (as R is zero sum free) x + y 6= 0, so ϕ(x + y) = 1. Moreover

ϕ(x) + ϕ(y) = 1 + 1 = 1. Similarly, ϕ(xy) = 1 since R is an integral domain and

ϕ(x)ϕ(y) = 1. Therefore the map ϕ is a semiring homomorphism. �

Example 2.27 (No Maps from Z to B). If ϕ : Z → B is a semiring homomor-

phism, then it must send the additive and multiplicative identities (respectively)

of Z to the additive and multiplicative identities of B; that is, ϕ(0) = 0 and

ϕ(1) = 1. However, this means ϕ(1 + (−1)) = 0 and 1 +ϕ(−1) = 0. This system

has no solution in B. Therefore no such semiring homomorphism can exist.

Example 2.28. If ϕ : N → B is defined as in Example 2.25, then the kernel

is trivial — only 0 ∈ N is sent to 0 ∈ B. However, the morphism is far from

injective! The preimage of 1 has infinite cardinality. For this reason we will not

make use of the notion of kernel of a semiring homomorphism in this thesis.

Theorem 2.29. If R is a semiring, then R is disconnected if and only if there

exists a finite set, I, such that |I| ≥ 2 and for every i ∈ I non-zero semirings Ri

such that R ∼=
∏

I Ri.

Proof. If R is isomorphic to a finite product of semirings Ri, then the standard

idempotents form a family of idempotents which are (i) mutually orthogonal, and

(ii) sum to unity. So R is disconnected. If R is disconnected, then there exists a

finite set I (with at least two elements) and a family of idempotents (ei)i∈I such

that (i) eiej = δijei, and (ii)
∑

I ei = 1R. For each i ∈ I observe Rei := {rei | r ∈

R} is a semiring with multiplicative identity ei. Denote Ri := Rei. We can define

a semiring homomorphism ϕ : R→
∏

I Rei by r 7→ (rei)i∈I . This homomorphism

has the inverse ψ :
∏

I Ri → R which maps (riei)i∈I 7→
∑

I riei. �

Example 2.30. Theorem 2.29 gives us the tools to give another proof that the

semiring A := {(x, y) ∈ R2
+ | y ≥ x} in Example 2.20 does not decompose as a

product. Indeed the only idempotents of A are (0, 0), (1, 1), and (1, 0). No collec-

tion of these constitute a family of mutually orthogonal non-trivial idempotents

which sum to unity. Therefore A is not disconnected. Note: the proof of the
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existence of one non-trivial idempotent in a semiring R is not enough to conclude

that R splits as a (non-trivial) product; contrary to the case for commutative

rings.

It will be essential for us to understand morphisms between products of semi-

rings in order to really understand finite étale morphisms later in the thesis. We

will take some time now to study some of the important lemmata relating to such

morphisms of semirings.

Lemma 2.31. If R is a semiring, N a finite set, f : RN → R an R-algebra

homomorphism, and {ei | i ∈ N} ⊆ RN the family of standard idempotents, then

each of the following hold

(i) If ei 6= ej and f(ei) = f(ej), then f(ei) = f(ej) = 0.

(ii) N ′ := {r ∈ R | r 6= 0 and ∃i ∈ N : r = f(ei)} ⊆ R is an orthonormal

family of idempotents in R.

(iii) R ∼=
∏

r∈N ′ Rr.

Proof. In order to prove (i) consider multiplying both sides of the equation f(ei) =

f(ej) by f(ei). It follows f(ei) = f(eiej) = f(0) = 0. Moreover, by assumption,

f(ei) = f(ej) = 0. Before we prove (ii) let us first note: if r ∈ N ′, then there

exists precisely one ei ∈ RN which maps to it. For, if there were two (distinct)

ei, e` mapping to r, then by (i) r = 0.

In order to prove N ′ is an orthonormal family of idempotents it must be

shown that the r ∈ N ′ are idempotents, mutually orthogonal, and sum to unity.

Images of idempotents are idempotents. Orthogonality can be seen from the

following equations: for each r 6= s ∈ N ′ we have rs = f(ej)f(e`) = f(eje`) =

f(0) = 0. Recall the sum of the ei ∈ RN is unity, therefore f(
∑

N ei) = f(1) = 1.

Consider the term f(
∑

N ei). Since f is a homomorphism we see that f(
∑

N ei) =∑
N f(ei). Some of the ei will get sent to 0, however the image of those elements

which do not get sent to 0 are precisely the r ∈ N ′. Thus,
∑

r∈N r = 1 as required.

Theorem 2.29 proves the third part of this lemma. �
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After we have discussed quotient semirings we will present another version of

this lemma in terms of quotients of R, rather than the semirings Rr.

2.4 Congruence Classes and Quotients

In this section we formally describe how semirings can be constructed as quo-

tients of other semirings by congruence relations ; these are precisely the type

of equivalence relations that allow the operations of the semiring to descend to

the quotient. Of note is the fact that ideals do not play a prominent role in the

quotients of semirings in general, as they do with rings. James Borger [10] and

Golan [20] both describe congruence relations and their corresponding quotients.

Recall that an equivalence relation on a set S can be considered as a subset

of S × S in the following manner: if ∼ is an equivalence on S, then all relations

a ∼ b, for a, b ∈ S, correspond to pairs (a, b) ∈ S × S. We make use of this idea

in the following definition of a congruence relation.

Definition 2.32 (Congruence Relation). If R is a semiring, then a congruence

relation on R, denoted ∼, is an equivalence relation which, as a subset of R×R,

is a semiring. The collection of congruence classes of R under ∼ is denoted R/∼.

We will refer to the congruence relation which equates an element r ∈ R with

itself, and only itself, as the trivial congruence relation. As a subset of R×R the

trivial congruence relation corresponds to the diagonal ∆ := {(r, r) | r ∈ R}.

Theorem 2.33 (Quotient Semirings). If R is a semiring and ∼ is a congruence

relation on R, then the set of equivalence classes R/∼ forms a semiring with the

operations [r] + [s] := [r + s] and [r] · [s] := [r · s].

Proof. In order to prove this we need to prove that + and · as given in the

statement of theorem are well defined, and that they have identities. Suppose

r ∼ r′ and s ∼ s′ are equivalences under the congruence relation. We are required

to prove [r] + [s] = [r′] + [s′] and [r] · [s] = [r · s].
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Let S∼ ⊆ R × R denote the congruence relation as a subsemiring of R × R.

This means (r, r′) ∈ S∼ and (s, s′) ∈ S∼. Since S∼ is a semiring, we know

(r, r′) + (s, s′) = (r + s, r′ + s′) ∈ S∼. However, this implies r + s ∼ r′ + s′ and

[r] + [s] = [r′] + [s′]. Similarly, (r, r′) · (s, s′) = (rs, r′s′) ∈ S∼, so [r] · [s] = [r′] · [s′].

The congruence classes generated by the additive and multiplicative identities,

[0] and [1], are the additive and multiplicative identities (resp.) for the addition

and multiplication on the set R/∼. �

Remark 2.34. If R is a ring, then quotienting R by a congruence relation is

equivalent to “quotienting by an ideal”. In particular, if I ⊆ R is an ideal of

R, then we can define an equivalence relation, ∼I , on R in the following way:

∀a, b ∈ R, we say a ∼I b if and only if a− b ∈ I. From a congruence relation, ∼,

on R one may obtain an ideal I∼ := {r ∈ R | r ∼ 0}. If R is a ring, then these

two processes are inverses of one another; that is to say, ideals and congruence

relations are in bijection with one another. This bijection makes calculations with

quotients very convenient.

If R is a semiring and I is an ideal of R, then these processes are not inverses.

That is to say congruence relations are not in bijection with ideals.

Definition 2.35 (Simple Semirings). If R is a semiring that has precisely two

congruence relations, then we say R is simple.

Example 2.36. The only semiring which is both simple and zero sum free is B

[20].

Definition 2.37 (Maximal Congruence Relations). If ∼ is a congruence relation

on a semiring R such that R/∼ is simple, then we say ∼ is a maximal congruence

relation.

All fields are simple semirings. However, there are some semifields which

are not simple. For example, the positive rational numbers Q+ is not a simple

semiring; for there is a surjective homomorphism f : Q+ → B which is determined

by 0 7→ 0 and 1 7→ 1.
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Definition 2.38 (Quotient by a Single Relation). If R is a semiring and (a, b) is

an element of R×R, then we denote the smallest congruence relation on R defined

by (a, b):=∼(a,b) and the corresponding quotient semiring R/〈a = b〉 := R/∼(a,b).

The smallest congruence relation on R exists due to the fact that the intersec-

tion of subsemirings (in this case subsemirings of R × R) is again a subsemiring

and the intersection of a subequivalence relations is again an equivalence relation.

Thus the interection of congruence relations is again a congruence relation.

Remark 2.39. In order to obtain the smallest subsemiring of R×R containing

(a, b) that is reflexive and symmetric it suffices to take the diagonal (for reflexiv-

ity) and all polynomials of the form
∑n

i=0(ri, ri)(a, b)
i and

∑n
i=0(ri, ri)(b, a)i.

One might then ask: If S∼ ⊆ R × R is a reflexive symmetric subsemiring

of R × R, is S∼ necessarily transitive? — no. Consider the reflexive symmetric

semiring of N×N generated by the element (1, 2). This contains (1, 2) and (2, 3).

But it cannot contain (1, 3). For this reason one must further close S∼ under

transitivity. That is, include all transitive relations.

If ((ai, bi))i∈I is a family of elements in R × R, then we can consider the

smallest congruence relation of R × R that contains each of the elements (ai, bi)

and denote this ∼((ai,bi))i∈I . We denote the corresponding quotient semiring of R

generated by the (ai, bi) as R/〈a1 = b1, . . . , ai = bi, . . . 〉 := R/∼((ai,bi))i∈I .

Example 2.40 (B as a Quotient of N). The Boolean semiring, B, can be re-

alised as the quotient of N by the (smallest congruence relation generated by the)

element (1, 2). Let the subsemiring of N × N corresponding to this congruence

relation be denoted S∼. Since S∼ is (i) a semiring (ii) symmetric, it contains

polynomials in (1, 2) and (2, 1). The only other elements it contains are the “clo-

sures under transitivity”. None of these elements have a 0 in precisely one of

their entries; this follows from the fact that N is a zero sum free integral domain.

Therefore, (0, n) /∈ S∼ if n 6= 0. In particular, (0, 1) /∈ S∼.

Thus N/〈1 = 2〉 contains precisely two congruence clases; namely, [0] and

[1]. Moreover, the induced operations are precisely the operations of the Boolean
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numbers. Therefore this quotient semiring is isomorphic to B under the isomor-

phism [0] 7→ 0 and [1] 7→ 1.

For use later in the thesis we state a theorem from Johnathon Golan’s Semi-

rings and Their Applications which relates to simple semirings; We will return

to this theorem and its corollary in Chapter 4 to discuss its geometric content.

Theorem 2.41 (Golan). If R is a non-zero semiring having no nontrivial proper

congruence relations, then either R = B or R is a field.

Corollary 2.42. If R is a non-zero semiring, then there exists a semiring homo-

morphism from R to B or a field.

Congruence relations and polynomial semirings allow us to give presentations

of semirings over other semirings. That is, we can represent a semiring as being

generated by a number of generators and relations.

Definition 2.43 (Presentations of Semirings). Let R,A be semirings. If I,N are

sets and (fi)i∈I and (gi)i∈I are families of polynomials in the polynomial semiring

R[xn | n ∈ N ] such that there exists an isomorphism

ϕ :
R[xn | n ∈ N ]

〈fi = gi | i ∈ I〉
→ A

then we say the data ((xn)n∈N , 〈fi = gi | i ∈ I〉, ϕ) is a presentation of A over R.

If N can be taken to be a finite set, then we say A is finitely generated over R.

If both I and N can be taken to be finite sets, then we say A is finitely presented

over R.

Example 2.44 (Presentation of the Integers over the Naturals). The ring of

integers has the following finite presentation over the natural numbers

Z ∼= N[x]/〈x + 1 = 0〉. If we define f̃ : N[x] → Z by mapping x 7→ −1, then f

descends to a surjective homomorphism f : N[x]/〈x+ 1 = 0〉 → Z. Moreover the

unique map out of the integers g : Z→ N[x]/〈x+ 1 = 0〉 is the inverse of f .

The next lemma reformulates Lemma 2.31 in terms of quotient semirings and

presentations.
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Lemma 2.45. If R is a semiring, N a finite set, with f : RN → R an R-algebra

homomorphism, {ei | i ∈ N} ⊆ RN the family of standard idempotents, and

N ′ := {r ∈ R | r 6= 0 and ∃i ∈ N : r = f(ei)} ⊆ R, then the morphism

ϕ : R→
∏
r∈N ′

R

〈r = 1〉

defined by mapping x 7→ (xr)r∈N ′ is an isomorphism.

Proof. In light of Lemma 2.31 it suffices to prove: ∀r ∈ N ′ Rr ∼= R/〈r = 1〉. In

order to prove this we define a morphism ψ : R → Rr by mapping x 7→ rx and

show this descends to an isomorphism on the quotient.

As this morphism is surjective, it suffices to prove that it descends to the

quotient. Denote by Ẽ the symmetric and reflexive closure of 〈(r, 1)〉 ⊆ R×R. Let

us first suppose (x, y) ∈ Ẽ. This implies there exist si, tj ∈ R such that (x, y) =∑k
i=0(si, si)(r, 1) +

∑`
j=0(tj, tj)(1, r). That is to say x =

∑k
i=0(sir) +

∑`
j=0 tj and

y =
∑k

i=0 si +
∑`

j=0 tjr. If we apply ψ to both sides we see:

ψ(x) = ψ

(
k∑
i=0

sir +
∑̀
j=0

tj

)
=

k∑
i=0

siψ(r) +
∑̀
j=0

tjψ(r) =
k∑
i=0

si +
∑̀
j=0

tj

ψ(y) = ψ

(
k∑
i=0

si +
∑̀
j=0

tjr

)
=

k∑
i=0

siψ(r) +
∑̀
j=0

tjψ(r) =
k∑
i=0

si +
∑̀
j=0

tj

This calculation uses the fact that ψ(r) = r2 = r, which is the identity on Rr.

This proves that if (x, y) are in Ẽ, then ψ maps them to the same element. In

order to prove ψ descends to the quotient, we need to check elements agree if

they are in the transitive closure of this set, which we denote E. If (u, v) ∈ E,

this implies there exists t ∈ R such that (u, t), (t, v) ∈ Ẽ. As we know ψ agrees

on elements upto Ẽ we may conclude ψ(u) = ψ(t) = ψ(v). Therefore ψ descends

to a morphism ψ : R/〈r = 1〉 → Rr. Injectivity follows in a similar manner to

our proof that ψ is well defined. Therefore ψ is an isomorphism.

�
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2.5 Modules over Semirings

In ring theory modules over a ring R are an important tool for studying the

structure of R itself and studying the geometry of Spec(R). The same is true

for semirings. This section introduces modules over a semiring and some of their

properties.

Definition 2.46 (R-module). If R is a semiring and M is a commutative monoid

with a bilinear map R×M →M which maps (r,m) 7→ rm and has the following

associativity property: ∀r, s ∈ R and m ∈ M (rs)m = r(sm), then we say M is

an R-module.

We refer to the bilinear map as multiplication by R, or the action of R on M .

We often suppress the fact that the multiplication by R is a bilinear map in our

notation, and simply denote it, for each r ∈ R and m ∈M , as rm.

Remark 2.47. If R is a semiring and M is a monoid, then giving an R-module

structure to M is equivalent to giving a semiring homomorphism f : R →

End(M). However, End(M) is, in general, not a commutative semiring.

Definition 2.48 (R-module Homomorphism). Let R be a semiring and M,N be

R-modules. If ϕ : M → N is a homomorphism of monoids, then we say ϕ is an

R-module homomorphism if ∀r ∈ R and m ∈ M , ϕ(r ·m) = r · ϕ(m). Where,

r ·m denotes the R-module action of R on M and r ·ϕ(m) denotes the R-module

action of R on N .

Definition 2.49 (Sub-R-module). If R is a semiring and M is an R-module,

then any submonoid N ⊆ M that is closed under the action of R is called a sub

R-module of M .

Example 2.50. If R is a semiring, then it is in fact a monoid under addition and,

separately, multiplication. However, the natural action of R on the multiplicative

monoid does not in general form an R-module, for the action does not distribute

over the operation (multiplication) of the monoid.
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Definition 2.51 (Ideals of Semirings). If R is a semiring and M ⊆ R is a sub-R-

module of the additive R-module, then we say that M is an ideal of the semiring

R.

Example 2.52. If R is a semiring and r ∈ R, then 〈r〉 := {x ∈ R | ∃a ∈ R x =

ra} is a sub-R-module of R. We call this the principal ideal generated by r.

Lemma 2.53. If e, e′ ∈ R are idempotents and 〈e〉 = 〈e′〉, then e = e′.

Proof. Since 〈e〉 = 〈e′〉 we know e′ ∈ 〈e〉 which implies there exists an r ∈ R such

that e′ = re. Similarly, there exists an r′ ∈ R such that e = r′e′. Together these

equations imply r′e′ · e′ = ee′ = re · e. Which implies r′e′ = re. Thus by choice

of r, r′ we conclude e = e′. �

Example 2.54. If M,M ′ are R-modules, then the product set M × M has

a natural module structure where multiplication by r on an element (m,m′)

is simply given by component-wise multiplication from the respective module

structures; that is to say, r · (m,m′) = (rm, rm′). We will often refer to this as

the diagonal action of R on the product M ×M ′. By extension, we can form any

product indexed by any set I and define the module structure component wise.

If F is a field, then all modules (i.e. vector spaces) over F are free by the

axiom of choice. The following example proves this is not the case for semifields.

Example 2.55. Let M := {(x, y) | x > 0 and y > 0} ∪ {(0, 0)} ⊆ R2. This is

an R+-module, which is not free. If this were free, then it would be generated

by two distinct vectors — for any three (or more) distinct non-zero elements are

necessarily dependent. However, given only two vectors one could never obtain

elements outside the R+ cone of them. Therefore M can’t be free.

Example 2.56. The Boolean semiring, B, is principally generated as a module

over N. However it is not freely generated.

Quotients of R-modules are also an important tool for the study of R-modules.

We present the relevant definitions for the formal study of quotients of R-modules.
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Intuitively, the idea is much the same as for semirings; however, instead of requir-

ing the equivalence relation E on an R-module M to be a sub-semiring of M×M ,

we simply require it to be a sub-R-module — indeed, a semiring structure has

not been defined on M and hence can’t be expected of a congruence relation in

M ×M.

Definition 2.57 (Equivalence Relation on an R-module). Let R be a semiring

and M be an R-module. An R-module equivalence relation, E, on M is a sub-

R-module E ⊆M ×M that is also an equivalence relation.

Theorem 2.58 (Quotient R-modules). If R is a semiring, M an R-module, and

E an R-module equivalence relation on M , then the set of equivalence classes of

M under E, denoted M/E, forms an R-module under the following operations:

∀a, b ∈M r ∈ R, [a] · [b] := [ab] and r[a] := [ra].

With quotients of R-modules defined we may now define the tensor product

of two R-modules. An important construction which will be used extensively in

the study of the geometry of semirings.

Definition 2.59 (Tensor Product of R-modules). Let M and N be R-modules.

Let E denote the equivalence relation on the free R-module
⊕

M×N R given by

the following relations:

∀ m,m′ ∈M ∀ n ∈ N (m+m′, n) = (m,n) + (m′, n)

∀ n, n′ ∈ N ∀ m ∈M (m,n+ n′) = (m,n) + (m,n′)

∀ r ∈ R ∀ m ∈M ∀ n ∈ N (r ·m,n) = (m, r · n) = r(m,n)

(0M , b) = 0

(a, 0N) = 0

Since M,N are R-modules, the quotient
⊕

M×N R/E comes equipped with a

natural R-module structure. We denote the quotient R-module, M ⊗R N :=⊕
M×N R/E and denote congruence classes of (m,n) ∈M×N asm⊗n ∈M⊗RN .
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The relations defined in the previous definition are really defined on the basis

elements e(m,n) of the free R-module
⊕

M×N R. However, we have abused notation

and identify each basis element with its index.

Remark 2.60. For a fixed R-module M the endofunctor

HomModR(M,−) : ModR →ModR

has a left adjoint given by the tensor product

M ⊗R − : ModR →ModR.

This means for each choice of R-module M,N, and P the following sets of homo-

morphisms are equal HomModR(M ⊗R N,P ) = HomModR(N,HomModR(M,P )).

Furthermore, since HomModR(N,HomModR(M,P )) = BilModR(M×N,P ) — the

module of R bilinear maps — we may conclude that a homomorphism M⊗RN →

P is equivalent to a bilinear homomorphism M ×N → P . In fact M ⊗RN is the

universal such object i.e. M ⊗R N is the coproduct of M,N in the category of

R-modules [10].

It will be important for us to understand the behaviour of products of finitely

many semirings and modules over such products of semirings. For now we will

state a number of lemmata pertaining to such objects which we can call on later

in the thesis.

Lemma 2.61. If R =
∏n

i=1Ri is a product of semirings Ri and M is an R-

module, then M ∼= ⊕ni=1Mi where Mi is an Ri-module.

Proof. In fact we can say precisely what each Mi is, namely

Mi := {m ∈M | eim = m}.

This should be expected as ei is the identity of Ri. First we note, if m ∈M , then

m = m · 1 = m(
∑n

i=1 ei) =
∑n

i=1 eix. Since ei · eix = eix, we know eix ∈ Mi.

Moreover, if x ∈ Mi and x ∈ Mj for i 6= j, then eix = x = ejx. If we multiply

through by ej, then we see ejeix = ejx = x i.e. 0 = x. Therefore M ∼= ⊕ni=1Mi,

as required. �
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Moreover the morphisms between modules over product semirings also break

up into morphisms which act componentwise according to the decomposition

given in Lemma 2.61.

Lemma 2.62. If R =
∏n

i=1 Ri is a product of R-algebras Ri and f : M → N

is morphism of R-modules, then (i) M ∼= ⊕ni=1Mi and N ∼= ⊕ni=1Ni, and (ii)

f = ⊕ni=1fi, for Ri-module homomorphisms fi : Mi → Ni.

Proof. Part (i) is the content of Lemma 2.61. Again, we can explicitly define

the required data. If xi ∈ Mi, then we define fi(xi) := f(xi). Since the Mi are

submodules, this is well defined. �

2.6 Algebras over Semirings

An algebra over a ring R is (intuitively) another ring A whose elements can be

multiplied by elements of R. Moreover, one typically requires that for each a ∈ A

(i) 0R× a = 0A and (ii) 1R× a = a. Morphisms of semirings allow us to formally

define what it means for A to be an algebra over R.

Definition 2.63. If R and A are semirings and ϕ : R → A is a semiring homo-

morphism, then we say the pair (A,ϕ) is an R-algebra.

If (A,ϕ) is an R-algebra, then we refer to ϕ as the structure morphism of the

R-algebra. We will often simply refer to (A,ϕ) by A, and leave the structure

morphism implied. Instead of saying A is an R-algebra, we may instead say A is

an algebra over R.

Remark 2.64. Indeed this does let us multiply elements of A by elements of R.

We define this multiplication in the following way: for each r ∈ R and a ∈ A, we

may define r× a := ϕ(r)a. Since ϕ is a semiring homomorphism both 0R and 1R

act as required in the introduction to this section.

Example 2.65. Every semiring R is an R-algebra over itself via the identity

homomorphism.
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Example 2.66. If R is a semiring and R[x1, . . . , xn] the polynomial in n inde-

terminates with coefficients in R, then the set map ϕ : R → R[x1, . . . , xn] which

sends each r ∈ R to the constant polynomial r ∈ R[x1, . . . , xn], is a semiring

homomorphism and therefore defines a structure morphism for R[x1, . . . , xn] over

R.

Example 2.67. Theorem 2.26 specifies a structure morphism for B over each

zero sum free semiring. Thus, the Booleans are an algebra over all zero sum free

semirings. This will be important later as it allows us to guarantee a B-point for

some N-schemes.

Example 2.68 (Semirings are N-algebras). If A is a semiring, then there is a

unique semiring homomorphism ϕ : N → A which maps 1 7→ 1A. This follows

from the fact that the image of 0 and 1 are determined, and the image of 1

determines the image of each n > 1 in N. Moreover, this induced map is a

semiring homomorphism. This implies that every semiring is an algebra over N

in a unique way. For this reason we will often refer to semirings as N-algebras.

Definition 2.69. If (A,ϕ) and (A′, ϕ′) are R-algebras, then an R-algebra homo-

morphism between them is a semiring homomorphism ψ : A→ A′ such that the

following diagram commutes

R

A A′

ϕ ϕ′

ψ

That is to say, ψ ◦ ϕ = ϕ′

Example 2.70. If R is a semiring and (A,ϕ), (A′, ϕ′) are R-algebras, then the

semiring homomorphism ψ : R→ A×A′ determined by r 7→ (ϕ(r), ϕ′(r)), defines

the R-algebra (A× A′, ψ).
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Definition 2.71 (Presentations of R-Algebras). Let R be a semiring and A an

R-algebra. If I,N are sets and (fi)i∈I and (gi)i∈I are families of polynomials in

the polynomial semiring R[xn | n ∈ N ] such that there exists an isomorphism

ϕ :
R[xn | n ∈ N ]

〈fi = gi | i ∈ I〉
→ A

of R-algebras, then we say the data ((xn)n∈N , 〈fi = gi | i ∈ I〉, ϕ) is a presentation

of A as an R-algebra. If N is a finite set, then we say A is a finitely generated

R-algebra. If both I and N are finite sets, then we say A is a finitely presented

R-algebra.

If R is a semiring and (A,ϕ), (B,ψ) are R-algebras, then we can construct

another R-algebra out of them, which we call the tensor product of A and B over

R, or simply the tensor product of A and B.

Definition 2.72 (Tensor Product of R-algebras). If (A,ϕ) and (B,ψ) are alge-

bras over a semiring R, then the tensor product A⊗RB is the R-module spanned

by elements of the form a⊗ b for a ∈ A and b ∈ B with the following relations

∀ a, a′ ∈ A ∀ b ∈ B (a+ a′)⊗ b = a⊗ b+ a′ ⊗ b

∀ b, b′ ∈ B ∀ a ∈ A a⊗ (b+ b′) = a⊗ b+ a⊗ b′

∀ r ∈ R ∀ a ∈ A ∀ b ∈ B ϕ(r)a⊗ b = a⊗ ψ(r)b = r(a⊗ b)

0A ⊗ b = 0

a⊗ 0B = 0.

In this way see A ⊗R B is a quotient of
⊕

M×N R and the congruence relation

generated by those relations given above. Moreover, the multiplication from

algebra structures extends toA⊗RB in the following way (a⊗b)(a′⊗b′) := aa′⊗bb′,

thus A⊗R B is in fact a semiring. Finally the morphism f : R→ A⊗R B which

sends r 7→ ϕ(r)⊗ 1 = 1⊗ ψ(r) = r(1⊗ 1) makes (A⊗R B, f) and R-algebra.

Note that the morphism a 7→ a ⊗ 1 from A → A ⊗R B is a semiring homo-

morphism, as 0A ⊗ 1B = 0A⊗RB ∈ A ⊗R B. Similarly, the map b 7→ 1 ⊗ b from
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B → A⊗RB is also a semiring homomorphism. Not all elements of A⊗RB are of

the form a⊗ b. In general, x ∈ A⊗RB is of the form x =
∑n

i=1 ai⊗ bi. Elements

of the form a⊗ b are called elementary tensors.

Remark 2.73. Similarly to Remark 2.60 we note that this tensor product of

R-algebras A, B has the following universal property: if f : A → C and g :

B → C are R-algebra homomorphisms, then there exists a unique R-algebra

homomorphism h : A ⊗R B → C which commutes with f, g and the morphisms

A→ A⊗RB and B → A⊗RB. Tensor product is the coproduct in the category

of R-algebras [10].

Example 2.74 (Useful Tool for Calculating Tensor Products.). If A is an R-

algebra with a presentation

A ∼=
R[xn | n ∈ N ]

〈fi = gi | i ∈ I〉

and C is another R-algebra, then the tensor product A ⊗R C has the following

presentation

A⊗R C ∼=
C[xn | n ∈ N ]

〈fi = gi | i ∈ I〉
where the polynomials fi and gi are interpreted with coefficients in C via the

structure morphism of the R-algebra C.

Lemma 2.75. If σ ∈ S|N | is an element of the permutation group on a finite

set N , then σ induces an R-algebra automorphism fσ : RN → RN by permuting

N . If A is an R-algebra, then (i) RN ⊗R A ∼= AN and (ii) fσ ⊗ idA : AN → AN

permutes the elements of N via σ.

2.7 Categories of Semirings

Category theory provides an excellent framework for thinking about mathematics

and is an indispensable tool for understanding mathematical objects and their

relations to each other. In this section we introduce the category of semirings
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and study the properties of this category. We note that James Borger [10] proves

much of what is to follow about the category of semirings.

Definition 2.76 (Category of Semirings). Let AlgN denote the category whose

class of objects is the class of all semirings and, for each pair of objects R,R′, the

morphisms between them are the set of semiring homomorphisms HomAlgN(R,R′).

This notation is used due to the observation in Example 2.68; that every

semiring is an N-algebra in a unique way. This is another way of saying N is the

initial object in the category of semirings.

Definition 2.77 (Category of R-algebras). If R is a semiring, then let AlgR

denote the category whose class of objects is the class of all R-algebras and, for

each pair of objects A,A′, the morphisms between them are the set of R-algebra

homomorphisms HomAlgR(A,A′).

Example 2.78 (Characteristic One). It is often said that a semiring R has

characteristic one if for all r ∈ R the equation r+ r = r holds [32]. In particular,

1 + 1 = 1 in such a semiring. In the context of the previous definition, this

naturally places all semirings of characteristic one inside AlgB. That is to say,

all semirings of characterisitic one are algebras over the Booleans.

When given a category, such as AlgN, there are a number of natural operations

under which one can ask if AlgN is closed. These properties include products

and coproducts. More generally, one can ask if AlgN is closed under limits and

colimits. Simply one might ask if a category is complete and/or cocomplete.

Lemma 2.79. If R is a semiring and A, A′ are R-algebras, then A×A′ has the

universal property of the product in AlgR. Moreover, A⊗R A′ has the universal

property of the coproduct in AlgR.

Proof. The product in the category of R-algebras can be computed in the under-

lying category of sets. Indeed the product set A× A′ equipped with component

wise operations and the projection maps π1 : A× A′ → A and π2 : A× A′ → A′
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form the triple (A× A′, π1, π2), which has the universal property of the product

in the category of R-algebras. That the tensor product is the coproduct follows

from Remark 2.60. �

Corollary 2.80. If R is a semiring, then AlgR is closed under finite products

and coproducts.

One can ask if AlgR has equalizers of every pair of morphisms ϕ, ψ : A→ B.

Again, AlgR does have limits.

Theorem 2.81. If A and B are objects in AlgR and ϕ, ψ ∈ HomAlgR(A,B),

then the equalizer and coequalizer of ϕ, ψ exist in AlgR.

Proof. The equalizer is simply the subsemiring E := {a ∈ A | ϕ(a) = ψ(a)}

with the inclusion morphism i : E ↪→ A. While the coequalizer of the pair ϕ

ψ is the quotient of B by the congruence relation generated by the elements

(ϕ(a), ψ(a)) ∈ B ×B. �

So far we know for each semiring R the category AlgR has finite products,

coproducts, equalizers, and coequalizers. Therefore we may conclude on the basis

of results from category theory, for each semiring R the category AlgR is finitely

complete and finitely cocomplete category [8]. This also means the opposite

category AlgR
op is both finitely complete and finitely cocomplete.

In the following lemmata we identify the sets MN and Homsets(N,M). In

particular we index an element RMN
with set maps α : N →M .

Lemma 2.82. If R is an N-algebra and M,N are finite sets, then the morphism

θ :
(
RM
)⊗N → RMN

defined on elementary tensors to send (r1
i )i∈M ⊗ · · · ⊗ (rni )i∈M 7→ x = (xα)α∈MN

where, xα :=
∏

j∈N r
j
α(j) is an R-algebra isomorphism.

Proof. In order to define a morphism out of a tensor product it suffices to define

a morphism out of each of the factors in the tensor product. Similarly, in order to
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define a morphism into a product it suffices to define a morphism into each factor.

Therefore we first define for each α ∈MN = Homsets(N,M) the morphisms

θα,j : RM → R

by mapping (ri)i∈M 7→ rα(j) i.e. θα,j is projection onto the α(j)th factor. Piecing

these together gives, by the universal properties of maps out of a tensor product,

R-algebra homomorphisms for each α ∈MN

θα : (RM)⊗N → R

by maping (r1
i )i∈M ⊗ · · · ⊗ (rni )i∈M 7→

∏
j∈N θα,j((r

j
i ))i∈M =

∏
j∈N r

j
α(j). Finally

the universal property for morphisms into a product yield the morphism claimed

in the statement of the lemma.

�

Lemma 2.83. If R is an N-algebra and M,N are finite sets, then the morphism

η : HomAlgR(RM , RN)→ HomAlgR((RM)⊗N , R)

defined by f 7→ π1f ⊗ π2f ⊗ · · · ⊗ πnf is an isomorphism of sets.

Proof. This is a restatement of the universal property of tensor products. �

Lemma 2.84. If R is an N-algebra, M,N finite sets, and α : N → M a mor-

phism of finite sets, then α induces a morphism fα : RM → RN by mapping

r 7→ s = (sj)j∈N where sj = rα(j).

Proof. That this is a homorphism follows from the universal property of mor-

phisms into a product. It is constructed from the N morphisms which project

onto the α(j)th factor. �

Remark 2.85. If α : N → M is a map between finite sets N,M , then fα

can be defined as in Lemma 2.84. Furthermore, we can use α to define the

morphism πα : RMN → R as the projection onto the α-th factor. We will
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now prove η(fα) = πα ◦ θ. That is to say, fα is sent to πα under the fol-

lowing chain of isomorphisms HomAlgR(RM , RN) ∼= HomAlgR((RM)⊗N , R) ∼=

HomAlgR(RMN
, R). It suffices to check how these morphisms act on elementary

tensors. On the one hand η(fα)(((r1
i )i∈M ⊗ · · · ⊗ (rni )i∈M)) = (π1(fα)(r1

i )i∈M) ⊗

· · · ⊗ π1(fα)(rni )i∈M)) = r1
α(1) · · · rnα(n) =

∏
j∈N r

j
α(j). On the other hand Lemma

2.83 shows πα ◦ θ(((r1
i )i∈M ⊗ · · · ⊗ (rni )i∈M)) =

∏
j∈N r

n
α(n). So we see these maps

are equal.

Lemma 2.86. Let I be a finite set indexing a family (Ri)i∈I of N-algebras Ri

and πj :
∏

i∈I Ri → Rj denote the projection onto the jth component.

If f :
∏

i∈I Ri → A is an N-algebra homomorphism, then (i) A ∼=
∏

i∈I Ai for

some N-algebras Ai and (ii) the morphism id ⊗ πjA → A ⊗R Rj induced by the

tensor product commutes with the projection π′j : A → Ai in the following way

id⊗ πj = π′j ◦ g, where g : A→
∏

iAi is the isomorphism from (i).

Proof. In fact (i) follows from Lemma 2.45. It remains to prove the morphism

id ⊗ πj acts as claimed. This morphism is the pull back of πj in the following

diagram of R-algebras.

R

A A⊗R Rj

Rj

id⊗ πj

πj

Given the presentation R ∼= Ri where Ri = R/(ei = 1) and (ei)i∈I are orthogonal

idempotents that sum to unity, πj acts by mapping ej 7→ 1. In fact all of the

other idempotents ei 6= ej are forced to vanish under πj. Moreover, the base

change is A⊗R Rj
∼= A/(f(ej) = 1). The commutativity of the pushout diagram

implies that id⊗πj maps f(ej) 7→ 1 and sends the rest of the elements f(ei) 7→ 0

for ei 6= ej. Therefore the map is nothing but the projection onto the component

Aj = A/(f(ej) = 1), as claimed.

�
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Given a semiring R one can also construct the category of R-modules. This is

an important tool in the study of the algebra, and geometry, of rings. Therefore

we should consider its uses in our work on the geometry of semirings.

Definition 2.87 (Category of R-modules). If R is a semiring, then let ModR

denote the category whose class of objects is the class of R-modules and for

each pair of objects M,M ′ the morphisms between them are the set of R-module

homomorphisms HomModR(A,A′).

Remark 2.88. Just as AlgN is equivalent to the category of semirings, so is

ModN equivalent to the category of (commutative) monoids. Therefore, when

referring to the category of (commutative) monoids, we will use the notation

ModN.

For each semiring, R, the category ModR is both complete and cocomplete.

This follows in an analogous manner to the argument given above for the com-

pleteness and cocompleteness of AlgR.

Given a semiring R and an R-module, M , one obtains a functor M ⊗R − :

ModR → ModR. This functor acts, on objects, by sending an R-module N 7→

M⊗RN . This functor has a right adjoint, namely, HomModR(M,−). This functor

takes N 7→ HomModR(M,N) the R-module of R-module homomorphisms from

M to N . However M ⊗R − does not (in general) have a left adjoint and as such

fails to preserve all finite limits. This motivates the following definition.

Definition 2.89 (Flat R-module). If R is a semiring and M an R-module, then

we say M is a flat R-module if the functor M ⊗R − : ModR →ModR preserves

finite limits.

Remark 2.90 (Flatness is the Same as Classical Definition). For each R-module

M the functor − ⊗R M is right exact — preserves surjective morphisms. In

ring theory one would say M is flat if it is also left exact, preserves injective

morphisms. That is to say M is flat if M ⊗R − preserves exact sequences. This

turns out to be the same as our definition above. Preservation of all finite limits
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is equivalent to the preservation of all finite products and equalizers. Tensor

products always preserve finite products. Thus, in order for M ⊗R − to preserve

all finite limits it is sufficient to check that it preserves all equalizers.

As mentioned earlier in the thesis ideals (kernels) play less of a role in the

theory of semirings. It is for this reason that we do not define flatness directly in

terms of preservation of short exact sequences as is done in module theory over

rings.

Example 2.91. If M is a free R-module, then M is flat. In particular, R is flat

over itself.

Example 2.92. If R is a field, then every R-module is flat. This follows from the

fact that all modules over a field are a filtered colimit of their finitely generated

submodules. Moreover, these submodules are finite dimensional vector spaces.

Therefore each module over a field is a filtered colimit of (free and hence) flat

modules, and hence is itself flat.

Definition 2.93 (Flat R-Algebra). If R is a semiring and A is an R-algebra,

then we say A is a flat R-algebra if the underlying R-module structure of A is a

flat R-module.

Example 2.94 (Additive Localization is Not Flat). In this example we will show

Z is not flat over N. Consider the diagram of N-modules 0,+ : N2 → N, where 0

corresponds to the 0-map and + corresponds to the N-module morphism which

sums the entries of the pair (a, b) ∈ N2. Since N is zero sum free, the equalizer of

this diagram is the trivial module 0.

If we tensor with Z, then the equalizer is the sub-module M = {(a,−a)} ⊆ Z2.

This is non-zero and hence not isomorphic to 0 ⊗N Z ∼= 0. Therefore, tensoring

with Z does not preserve all equalizers i.e. does not preserve all finite limits.

Remark 2.95. In commutative ring theory we often consider the process of

(multiplicatively) inverting an element x ∈ R thus forming the ring R[ 1
x
]. We
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call this process (multiplicative) localization. This process yields a morphism

R→ R[ 1
x
] which is always flat.

In commutative semiring theory we also have the option of additively inverting

elements. Let us call the process of adding the additive inverse of an element

additive localization. Example 2.94 proves additive localization is not in general

flat. Borger proved the following more general statement.

Theorem 2.96 (Borger, 2010). Let A be a zero sum free N-algebra, and let M be

a flat A-algebra. Then M is zero sum free. In particular, the zero module (0) is

the only flat A-module which is a group under addition, and the map A→ Z⊗NA

is flat if and only if Z⊗N A = 0.

Lemma 2.97. If R is a zero sum free N-algebra, A is a flat R-algebra, and

ϕ : R → B is the morphism which sends all non-zero elements r ∈ R to 1 ∈ B,

then the kernel of the induced map ϕA : A→ A⊗R B, is trivial.

Proof. Since R is zero sum free we can realise the kernel of ϕ as the pull-back of

the following diagram of R-modules

R B

0

ϕ

Similarly the kernel of ϕA is the base change of this diagram along the structure

morphism R→ A. We know the kernel of ϕA must also be trivial as the structure

morphism is flat, and any finite limit must be preserved along such a flat base

change. �

To finish this chapter we will prove that all projection morphisms

πj :
∏

i∈I Ri → Rj for I a finite set, are flat. That is, Rj is flat as an
∏

i∈I Ri-

module under the morphism πj. In order to get the idea of why this is true we

consider the following extended example of the case I is a set with two elements.
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Example 2.98. If R = R1×R2 and M is an R-module such that M ∼= M1⊕M2,

for Ri-modules Mi. We can define the congruence relation 〈(e2, 0)〉 on R. This

induces a congruence relation on the R-module M . What is the quotient of M

by the induced congruence relation?

Since e2 = 0 in the quotient, we know that the smallest congruence relation on

M it generates is the congruence generated by all elements of the form (e2m, 0).

Since it has to be symmetric we need all elements of the form (0, e2m). Closing

under transitivity yields all elements of the form (e2m, e2n). This yields the

submonoid (0 ⊕M2) ⊕ (0 ⊕M2) ⊆ M2. It is the smallest congruence relation

generated by all the elements (e2m, 0). Similarly, if we consider the congruence

relation generated by e1 = 0, then we would get the submonoid (M1⊕0)⊕ (M1⊕

0) ⊆M2.

Each element of m ∈ M can be written uniquely as m = xe1 + ye2, for some

x, y ∈M . In the previous paragraph we gave an explicit account of each element

in the congruence relation defined by (e2, 0). We saw that every element of M2

is in the same congruence class and that every element of M1 is in a distinct

congruence class. Thus the congruence class of m is [m] = [xe1]. Therefore we

see M/〈e2 = 0〉 = M1. Similarly, M/〈e1 = 0〉 = M2.

If R =
∏

i∈I Ri, then for each j ∈ I the factor Rj is isomorphic to the following

quotient Rj
∼= R/〈ej = 1, (ei = 0)i 6=j〉. It follows from this presentation for Rj

and the work in the previous example that the base change of M =
⊕

i∈IMi

along πj : R→ Rj is:

M ⊗R Rj = M ⊗R R/〈ej = 1, (ei = 0)i 6=j〉

= M/〈ej = 1, (ei = 0)i 6=j〉

= Mj

Lemma 2.99. If R ∼=
∏n

i=1Ri where Ri are N-algebra, then for each j the

morphism πj : R→ Rj is flat.

Proof. It suffices to prove any equalizer of R-modules remains an equalizer di-
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agram after extension of scalars along each πj. If we are given the equalizer

diagram

M N .E
f

g

Lemma 2.61 and Lemma 2.62 tell us the following is a commutative diagram

of R-modules.

M NE

⊕
i∈IMi

⊕
i∈I Ni.

⊕
i∈I Ei

f

g

⊕fi

⊕gi

∼ ∼∼
Furthermore we know the base change along the morphism πj : R → Rj

produces the following

(
⊕

Mi)⊗R Rj (
⊕

Ni)⊗R Rj.(
⊕

Ei)⊗R Rj

Mj Nj.Ej

⊕fi

⊕gi

fj

gj

∼ ∼∼

Moreover the arrow on the bottom diagram is an equalizer precisely because of

the way f and g decompose to act on the components of M . Therefore extending

scalars along πj : R → Rj does preserve equalizers and hence each Rj is a flat

R-module. �

Lemma 2.100. If R ∼=
∏n

i=1Ri where Ri are N-algebras, then the family (πi :

R→ Ri)
n
i=1 reflects isomorphisms.

Proof. If f : M → N is an R-module homomorphism, then Lemma 2.62 shows

f can be decomposed into (fi)
n
i=1, where fi : Mi → Ni. If we assume each fi is

an isomorphism, then we know that f itself must be an isomorphism. Therefore

this family reflects isomorphisms. �



Chapter 3

Algebraic Geometry of Semirings

Just as algebraic geometry helped algebraists understand commutative unital

ring theory, so it should help us understand commutative unital semirings. This

chapter of the thesis develops the geometric picture of the arithmetic of semirings.

We introduce affine N-schemes and explore some of their first properties. In

order to study the fundamental group of N-schemes we are required to introduce

a (Grothendieck) topology on (the category of) affine N-schemes. In fact the

notion of an N-scheme is not novel to this thesis. Betrand Toën and Michel

Vaquiè introduced the notion of an N-scheme (in the sense we will discuss for the

remainder of this thesis) in their paper Au-dessous de Spec(Z) [41]. For Toën

and Vaquiè an N-scheme was but one example of a more general class of objects,

for us N-schemes will be the explicit focus of our considerations.

3.1 Affine N-schemes

In the modern algebraic geometry of schemes, there are two approaches to the

foundation of the subject; building affine schemes out of the spectrum of prime

ideals and equipping a structure sheaf, or foregoing the topological space and

considering only the functor of points. Thus when considering the extension of

this idea to the category AlgN one must make a choice, at least at first, about

44
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which direction to take when formulating the foundations of the subject.

It seems much of the work in the former approach is done by the structure

sheaf of the locally-ringed space. One is then lead to think that there could be an

approach which does not bother with the underlying topological space. Indeed,

Grothendieck himself advocated for the latter approach to the foundations of

algebraic geometry [21]. In this thesis we take the latter approach. We forgo

the idea of an underlying topological space and define our “semiring-schemes” as

certain functors of points.

Definition 3.1 (Affine N-Scheme). IfX : AlgN → Sets is a representable functor

from the category of N-algebras to the category of sets, then we say X is an affine

N-scheme.

We will often drop the word affine and refer just to N-schemes. In this thesis

all N-schemes are affine N-schemes.

Definition 3.2 (Affine n-Space). If R is an N-algebra, then we denote

An
R := Spec(R[x1, . . . , xn]) and refer to this N-scheme as affine n-space over R.

In the special cases (i) n = 1, we refer to A1
R as the affine line over R, and (ii)

n = 2, we refer to A2
R as the affine plane over R.

Remark 3.3. Given an N-algebra, C, we will often refer to the C-points of An
N.

This is simplified greatly under the following identification:

An
N(C) = Cn. This identification is justified, as a homomorphism from N[x1, . . . , xn]

to an N-algebra C is determined by the choice of images of the xi in C. Indeed,

each choice of an image of xi specifies a morphism uniquely. In this way we make

the identification HomAlgN(N[x1, . . . , xn], C) = Cn.

Example 3.4 (Empty N-Scheme). If C is an N-algebra, then we can ask for the

C-points of the N-scheme Spec(0). If C 6= 0, then Spec(0)(C) = ∅. If C = 0, then

Spec(0)(C) = {?}. For this reason we make the following denotation ∅ := Spec(0)

and we call this the empty N-scheme.
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3.2 Morphisms of Affine N-Schemes

Definition 3.5. If X, Y are affine N-schemes, then we refer to natural transfor-

mations between them as morphisms of N-schemes.

Remark 3.6. The Yoneda lemma implies the natural transformations between

affine N-schemes are in bijection with (determined uniquely by) morphisms be-

tween the objects (N-algebras) representing the affine schemes.

Note: if f : Spec(A) → Spec(B) is a morphism of affine N-schemes, then

we may refer to the induced morphism between N-algebras as f ∗ : B → A.

We denote the category of affine N-schemes with N-scheme morphisms (natural

transformations of functors) between them as AffN.

Remark 3.7 (Geometry is Coarithmetic). The Yoneda lemma implies the fol-

lowing equivalence of categories AffN= AlgN
op, thus realizing (affine) algebraic

geometry as little more than an application of the category theoretic philosophy

of dualizability. Just as every limit has a notion of colimit, every category has a

cocategory. That is, every category has an opposite category. Algebraic geometry

is thus the dual of algebra.

Remark 3.8 (Notation in AffN). We denote the image of an N-algebra, R,

under the Yoneda embedding Y : AlgN → AffN as Spec(R) := HomAlgN(R,−).

If ϕ : A→ B is a morphism of N-algebras, then ϕ gives rise to a morphism

f : Spec(B)→ Spec(A).

It will be useful for us to know whether an affine N-scheme can be realised

as an affine scheme over Spec(Z); that is, whether or not it is an affine scheme

in the usual sense, or it is a genuine (not ring) semiring. In order to do this we

can appeal to the following result of Borger-Grinberg [11]. Golan’s Theorem 2.41

(as stated in this thesis) features in the proof given by Borger-Grinberg. In some

sense the following theorem should be considered a geometric interpretation of

Theorem 2.41.
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Theorem 3.9 (Borger-Grinberg 2015). If A is an N-algebra and X := Spec(A),

then X ∈AffZ if and only if X(B) = ∅.

Proof. See Borger-Grinberg 2015 [11]. �

Given an affine N-scheme X : AlgN → Sets, is it possible to retrieve the

underlying N-algebra? Yes. It is done in the same manner as one would retrieve

the coordinate ring from a (classical) algebraic variety, simply take the N-scheme

morphisms between X and the affine line, A1
N.

Definition 3.10 (Function Algebra of an N-Scheme). Let X be an object in

AffN and denote the set O(X) := HomAffN(X,A1
N). This set can be equipped

with an N-algebra structure. In order to define the sum and product of these

natural transformations of functors, we need only say how they act on algebras,

C, in AlgN. For this definition we identify A1
N(C) = C. If f, g ∈ O(X), then

• (f + g)(C) : X(C)→ C, such that ∀a ∈ X(C) : a 7→ f(a) + g(a)

• (f · g)(C) : X(C)→ C, such that ∀a ∈ X(C) : a 7→ f(a) · g(a)

As additive and multiplicative identities we have the morphisms 0OX and 1OX

defined on objects, C, of AlgN in the following manner:

• 0OX (C) : X(C)→ C, such that ∀a ∈ X(C) : a 7→ 0C

• 1OX (C) : X(C)→ C, such that ∀a ∈ X(C) : a 7→ 1C

We call this N-algebra the function algebra of the affine N-scheme X.

Lemma 3.11. If R is an N-algebra and X = Spec(R), then O(X) ∼= R.

Proof. In this case we have O(X) := HomAffN(Spec(R),A1
N). Furthermore this

is defined to be HomAffN(Spec(R),A1
N) := HomAlgN(N[x], R). Given a natural

transformation η : Spec(R)→ A1
N, we need to construct an element of R. We will

do this by identifying HomAlgN(N[x], R) = R as in Remark 3.3. It is the Yoneda

lemma that gives us this morphism: F : O(X)→ R which maps η 7→ ηR(idR)(x),
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where x is the indeterminate in the polynomial algebra N[x]. The content of the

Yoneda lemma is the fact that this map is bijective. We are left to show it is in

fact a homomorphism of semirings.

If η, µ ∈ O(X), then (η + µ)(R)(f) = η(R)(f) + µ(R)(f), by definition.

From which it follows that (η + µ)(R)(idR) = η(R)(idR) + µ(R)(idR). Therefore

F (η) + F (µ) = η(R)(idR)(x) + µ(R)(idR)(x) = (η + µ)(R)(idR)(x) = F (η +

µ). Similarly one sees that F respects the multiplication structures on both N-

algebras. Finally, because 0OX maps everything to 0, it maps x ∈ N[x] to 0.

Similarly for 1OX . Therefore, the bijection from the Yoneda embedding is an

isomorphism of N-algebras.

�

The assignment of X 7→ O(X) forms a contravariant functor, which we de-

note O(−) : AffN → AlgN. Moreover, Spec(−) and O(−) form explicit (anti-)

equivalences of the categories AlgN and AffN.

Since the category AlgN is complete and cocomplete, so too is AffN. Although

the following constructions are simply duals of those given in Chapter 2, we will

spell them out and give them their own notation. Each of the following definitions

are duals of those given Chapter 2; products of N-algebras and coproducts of affine

N-schemes, and vice-versa. First we dualize the notion of an R-algebra.

Definition 3.12. If R is an N-algebra, and (A,ϕ∗) is an R-algebra, then we say

ϕ : Spec(A)→ Spec(R) is a scheme over Spec(R).

The category of all N-schemes over Spec(R), with morphisms which respect

the morphisms to Spec(R), is denoted AffR. Moreover, this category is (anti)-

equivalent to the category AlgR. At times, we may refer to N-schemes over

Spec(R) as R-schemes. Note: this does not conflict with the original notation of

N-schemes, as every R-scheme is an N-scheme in a unique way. Thus N-schemes

as defined in Definition 3.1 are exactly the same as “N-schemes over Spec(N)”.

If R is an N-algebra and A,B are R-algebras, then the coproduct of the

corresponding R-schemes is given by Spec(A)
∐

Spec(B) ∼= Spec(A × B). Since
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A and B are R-algebras, we can take the tensor product of A and B over R. In

AffR this corresponds to Spec(A) ×Spec(R) Spec(B) ∼= Spec(A ⊗R B), which we

refer to as the (fibered) product of the affine N-schemes over X.

Definition 3.13 (Base Change Along a Morphism). Let X = Spec(R) be an

affine N-scheme. If f : Y → X is an R-scheme and g : Z → X is another

R-scheme, then we can consider the following diagram:

X

Y

Z

Y ×X Z

f

g

g∗(f)

We refer g∗(f) : Y ×X Z → Z as the base change of f along g.

We may denote the corresponding scheme as YZ := Y ×X Z. The phrases pull

back of f along g and pull back of Y along Z will be used interchangeably with

base change of f along g.

Remark 3.14. Let X = Spec(R) and Z = Spec(A). If f : Z → X is a scheme

over X, then base change along Z defines a functor − ×X Z : AffR→ AffA. It

takes schemes over X to schemes over Z. This idea will be important for us later

in the thesis. This is the geometric dual of the tensor functor −⊗R A : AlgR→

AlgA.

Definition 3.15 (Flat Map of Affine N-schemes). If f : Y → X is a morphism

of affine N-schemes and the induced algebra f ∗ : O(X) → O(Y ) is flat, then we

say f : Y → X is a flat map of N-schemes.

Dual to the pullback (base change) construction is the pushout construction.

This is often considered analogous to glueing N-schemes together along a common

(up to isomorphism) “sub-N-scheme”.
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Definition 3.16 (Pushout of a Diagram). If X, Y, and Z are objects in a category

C with f : X → Y and g : X → Z between them, then the pushout (if it exists in

C) is an object Y tX Z with morphisms iY : Y → Y tX Z and iZ : Z → Y tX Z

which, together, satisfy the following universal property;

X

Y

Z

Y tX Z

f

g

For each object T in C, if f ′ : Y → T and g′ : Z → T are morphisms in C,

then there exists a unique morphism i : Y tX Z → T such that f ′ = i ◦ iY and

g′ = i ◦ iZ .

For each semiring R the category AffR has pushouts given by the spectrum

of the pull back of the corresponding diagram of R-algebras.

3.3 Finiteness Conditions on Affine N-Schemes

If X is an affine N-scheme, then it is isomorphic to a N-scheme of the form

X = Spec(R). Moreover, if Y ∼= Spec(A) is an affine N-scheme over X, then we

can ask for a presentation of A as an R-algebra. Dual to the notion of finitely

generated and finitely presented algebras are morphisms of finite type and finitely

presented morphisms.

Definition 3.17 (Finiteness Conditions of Morphisms). If X = Spec(R) is an

affine N-scheme and f : Spec(A) → Spec(R) is an affine N-scheme over X, then

we say f is of finite type if A is finitely generated as an R-algebra. If A is finitely

presented as an R-algebra, then we say f is a finitely presented morphism.

Example 3.18. Let R be an N-algebra and A be an R-algebra. Suppose further

that A has the following presentation:

A =
R[x1, . . . , xn]

〈f1 = g1, . . . , fm = gm〉
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where the fi and gi are polynomials in R[x1, . . . xn]. If g : Spec(C)→ Spec(R) is

an R-scheme, then the pull back of Spec(A) along Spec(C) is isomorphic to the

following C-scheme

Spec(A)×Spec(R) Spec(C) ∼= Spec

(
C[x1, . . . , xn]

〈f1 = g1, . . . , fm = gm〉

)
where the fi and gi are interpreted as polynomials with coefficients in C via the

structure morphism of the R-algebra, C. Therefore we see, in this case, pulling

back along an affine N-scheme simply changes the coefficients of the presentation

and hence preserves the property of being finitely presented.

As mentioned in Chapter 2 finite generation and finite presentation are relative

properties. They are defined over some fixed base Spec(R).

3.4 Positive Cones of Affine Schemes

We will now consider an interesting family of examples of this glueing (pushout)

construction. It will provide a geometric way of thinking about positivity and

the passage from the natural numbers to the integers.

Example 3.19. In this example we consider the pushout of the following diagram

of N-schemes; which we interpret as gluing Spec(R+) to Spec(Z).

Spec(R)

Spec(R+)

Spec(Z)

Spec(R+) tSpec(R) Spec(Z)

Dual to this diagram is the corresponding pullback of N-algebras. Since all of the

morphisms are injective morphisms of N-algebras, the pullback is given by the

intersection of R+ and Z in R i.e. R+ ×R Z ∼= N and as affine N-schemes we see

Spec(N) ∼= Spec(R+)
∐

Spec(R) Spec(Z).
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Example 3.20 (Positive Cone over an Affine N-scheme). The glueing of Spec(R+)

to Spec(Z) in Example 3.19 is not special to Spec(Z). As long as an affine N-

scheme X has a Spec(R) point, then we may perform this glueing construction.

If X is an affine N-scheme such that p ∈ X(R), then let us denote

X+
p := Spec(R+) tSpec(R) X. Note this construction depends upon the choice of

point in X(R). In this notation we see that there is only one p ∈ Spec(Z)(R) and

at this point Spec(N) = Spec(Z)+
p . We will refer to X+

p as the positive cone of X.

Remark 3.21 (Positive Cones are not in AffZ). By construction the positive

cone of an affine N-scheme X (with an R point) necessarily has a B-point coming

from the attachment of R+. This implies X+
p is not the spectrum of a ring.

Example 3.22 (Positive Cones of Rings of Integers). Further to constructing

the positive cone over the spectrum of a number field with a real place, we

can construct the positive cone over the corresponding ring of integers (or any

order inside the number field). If E : Q is a real finite separable extension

and OE denotes the ring of integers in E, then there is (in general) more than

one embedding p : OE → R, each of which will give a different sub-semiring

O+
E,p ⊆ OE.

In order to obtain a subsemiring which does not depend upon the embed-

ding, we consider taking the intersection of all O+
E,p inside OE. Geometrically

this corresponds to glueing each of the N-schemes Spec(O+
E,p) together along the

structure morphisms to Spec(OE).

Example 3.23. If E := Q(
√

2), then OE = Z[
√

2]. Note E/Q is a Galois

extension with Galois group Gal(E/Q) = {id, σ}, where σ(a + b
√

2) = a− b
√

2.

Therefore there are precisely two real embeddings, which we denote with the same

symbols as the elements of the Galois group, namely id and σ. With these real

embeddings we obtain the following N-algebras: O+
E,id := {a+b

√
2 | a+b

√
2 ≥ 0}

and O+
E,σ := {a+ b

√
2 | a− b

√
2 ≥ 0}.

If we glue these along the morphisms Spec(OE)→ Spec(O+
E,σ) and Spec(OE)→

Spec(O+
E,σ) we obtain a new N-scheme
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Spec(OE)

Spec(O+
E,id) Spec(O+

E,σ)

Spec(O+
E,id)

⊔
Spec(OE) Spec(O+

E,σ)

In fact this N-scheme is affine and represented by the N-algebra:

O++
E := {a+ b

√
2 | ∀ϕ ∈ Gal(E/Q) ϕ(a+ b

√
2) ≥ 0}

which we call the totally positive subsemiring of OE. Notice that this depends

only on E and not any specific embedding p : E → R.

Definition 3.24 (Totally Positive Semiring). If E/Q is a real finite extension

and S := HomAlgQ(E,R), then we define the totally positive sub semifield of E

to be E++ := {x ∈ E | ∀ϕ ∈ S ϕ(x) ≥ 0} and the totally positive sub semiring

of OE to be O++
E := {x ∈ OE | ∀ϕ ∈ S ϕ(x) ≥ 0}.

If we are given a morphism of affine N-schemes f : Y → X such that X, Y

have real points p ∈ X(R) and q ∈ Y (R), then do we always obtain a natural

morphism f+ : Y +
q → X+

p ? In general, the answer is no. However, if the point q

sits over the point p, then we do obtain a natural morphism f+ : Y +
q → X+

p . This

is the geometric interpretation of the following theorem. We use the following

notation in the statement of the next theorem: For any semiring R, let AlgR

denote the category with (i) objects defined to be pairs (A, p), where A is an

N-algebra and p : A → R is an N-algebra homomorphism, and (ii) a morphism

between pairs ϕ : (A, p) → (B, q) is an N-algebra homomorphism ϕ : A → B

such that q ◦ ϕ = p.

Theorem 3.25. If we define the map + : AlgR → AlgR+ which maps (A, p) 7→

Ap+ := A×R R+, then this can be extended to a functor by mapping ϕ : (A, p)→

(B, q) to the morphism +(ϕ) : Ap+ → Bq
+ defined by (a, r) 7→ (ϕ(a), r).



54 CHAPTER 3. ALGEBRAIC GEOMETRY OF SEMIRINGS

Proof. We note the fibre product that defines Ap+ is given by the pull back of the

following diagram

R

R+

A

A+

In particular Ap+ = {(a, r) ∈ A × R+ | p(a) ≥ 0}. If we are given a morphism

ϕ : (A, p)→ (B, q) and a morphism ψ : (B, q)→ (C, r), then we can fit this data

into the diagram

A

Ap+ R+

R

B R

Bq
+ R+

C R

Cr
+ R+

ϕ

ψ

ϕ+

ψ+

In order for this assignment to define a functor we have to say what ϕ+ := +(ϕ)

is for each morphism ϕ : (A, p)→ (B,ψ) and check that the assignment behaves

well with respect to composition. We define +(ϕ) : Ap+ → Bq
+ to be the map

which sends (a, r) 7→ (ϕ(a), r). In order to check this is well defined, we need

only check q(ϕ(a)) ≥ 0. However, we know q ◦ ϕ = p (as we are only considering

morphisms of algebras whose R-points commute) and therefore q(ϕ(a)) = p(a) ≥

0 as (a, r) ∈ Ap+. It is routine to check ψ+ ◦ ϕ+ = (ψ ◦ ϕ)+. �

3.5 Topologies on AffN

This thesis aims to develop the theory of the étale fundamental group of an affine

N-scheme in a manner analogous to that of Grothendieck and Artin in SGA 4.
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In order to do so we need an algebraic analog of a covering space of a topological

space. That is to say, we need to define “locally trivial” morphisms of N-schemes.

In this section we make precise what we are to mean by “locally”.

In the study of topological spaces one refers to a topology on the space in order

to define things locally. Topologies on a space consist of an assignment of subsets

of the space. However, we have given up any genuine notion of topological space

in our study of affine N-schemes. Our approach has been largely determined by

the philosophy of category theory; objects are determined by the morphisms to

them. This suggests that we should consider our “opens” — previously, inclusions

i : U ↪→ X of subsets — simply as any morphism f : Y → X in AffN.

In the definition of a covering space and the notion of a sheaf, it is the notion of

an open covering of the base space that is important. We can talk about a “cover”

without actually specifying a topology. An open cover of a topological space is a

jointly surjective family (indexed by a set I) of “open sets” (Ui ↪→ X)i∈I .

Definition 3.26 (Grothendieck Topology). Let X be an object of a category C.

A covering family of X is a class of families of morphisms {(Ui → X)i∈I}, in

the category C, denoted Cov(X). A Grothendieck topology on a category C is an

assignment of a collection1 Cov(X) for each object X in C such that the following

properties are satisfied:

(i) If V → X is an isomorphism, then (V → X) ∈ Cov(X)

(ii) If (Wi → X)i∈I is in Cov(X) and Y → X is any arrow in AffR, then

(Wi ×X Y → Y )i∈I is in Cov(Y ).

(iii) If (Wi → X)i∈I is in Cov(X) and (Vij → Wi)j∈Ji is in Cov(Wi) for each

i ∈ I, then the compositions (Vij → Wi → X)i∈I,j∈Ji are in Cov(X).

When specifiying, or referring to, a Grothendieck topology on a category we

will drop the word Grothendieck and simply refer to it is as a topology on the

1In general Cov(X) will not be a set. Indeed the collection of all one element covers is too

big to be a set. However, we will not address these set theoretic issues in this thesis.
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category.

Remark 3.27. In Sketches of an Elephent (Sketches) Peter Johnstone uses the

term coverage for what we have defined to be a Grothendieck topology [25, 26].

Thus we depart from his notation in two ways. First we retain the use of the

word topology from Grothendieck’s original exposition of the idea, instead of

using Johnstone’s term coverage. Coverages as defined in Sketches are equivalent

to the topologies we defined above. Secondly, we use Grothendieck’s name in

our definition, whereas Johnstone requires of a Grothendieck coverage that each

family must in fact consist of sieves, special types of coverages. For the purposes

of our work coverages are sufficient and provide good geometric intuition without

clouding the idea with too much detail, so we will not make use sieves. Note:

Lemma 2.1.3 on p. 538 of Sketches proves a functor X : Cop → Set is sheaf

for a coverage if and only if it is a sheaf for the sieve generated by a coverage.

This vindicates our choice as the main objects of study for arithmetic algebraic

geometers are sheaves on a particular site [26].

Before we introduce the main topology on the category AffR that we will use

for the remainder of the thesis, we need one more definition.

Definition 3.28 (Faithful Family). If R is an N-algebra, I a set, and (fi : R→

Ci)i∈I is family of morphisms of R-algebras with the following property for each

morphism g : M → N of R-modules:

(P) if for each i ∈ I the morphism of Ci-modules g⊗id : M⊗RCi → N⊗RCi is

an isomorphism, then the original morphism g : M → N must be an isomorphism,

We say the family of R-algebras (fi : R → Ci)i∈I is a faithful family of R-

algebras. If (fi : Ui → X)i∈I is a family of morphisms of affine N-schemes, then

we say it is a faithful family if the corresponding family of O(X)-algebras is a

faithful family.

Lemma 3.29. Let X = Spec(R) be an object in AffN. Let Cov(X) denote

collection of all families of morphisms (ϕi : Wi → X)i∈I in AffN with the following

properties
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(1) each ϕi : Wi → X is flat

(2) the collection of all ϕi is faithful.

In this case Cov(X) has the following properties

(i) If V → X is an isomorphism, then (V → X) ∈ Cov(X)

(ii) If (Wi → X)i∈I is in Cov(X) and Y → X is any arrow in AffR, then

(Wi ×X Y → Y )i∈I is in Cov(Y ).

(iii) If (Wi → X)i∈I is in Cov(X) and (Vij → Wi)j∈Ji is in Cov(Wi) for each

i ∈ I, then the compositions (Vij → Wi → X)i∈I,j∈Ji are in Cov(X).

Proof. Isomorphisms V → X are flat and reflect isomorphisms. Recall that

a morphism is flat if it preserves finite limits, so the composition of two flat

morphisms is certainly flat. Moreover, the composition of two faithful families of

morphisms is also faithful. The crux of this lemma is proving that the pull-back

of a faithful family (Ui → X)i∈I along a morphism Y → X remains faithful over

Y .

If (Ui → X)i∈I is a faithfully-flat family over X and Y → X is an affine

N-scheme over X, then we may obtain a family of flat (since flatness is preserved

along base-changes) morphisms (Y ×XUi → Y )i∈I . Let ϕ : Z → Z ′ be a morphism

of N-schemes over Y such that for each i ∈ I the base change of ϕ along Y ×X
Ui → Y is an isomorphism of affine N-schemes. It suffices to show that ϕ is an

isomorphism.

X

Ui

Y ×X Ui
Y

Z Z ′
ZUi Z ′Uiϕ

∼

If we consider Z,Z ′ as schemes over X by post-composing with the structure

morphism Y → X, and further consider ϕ as a morphism of affine N-schemes
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over X, then the diagram above makes it clear that each isomorphism ZUi → Z ′Ui

arises from the pull-back along each morphism Ui → X as schemes over X.

Therefore the fact that the family is faithfully flat over X implies ϕ : Z → Z ′ is

an isomorphism of N-schemes over X. However, this implies that it must in fact

be an isomorphism of N-schemes over Y . Therefore the family (Y ×X Ui → Y )i∈I

does reflect isomorphisms. �

Definition 3.30 (Flat Topology). If R is an N-algebra, X := Spec(R), and I

is a set, then the collections Cov(X) of families (ϕi : Wi → X)i∈I such that (i)

each ϕi : Wi → X is flat, and (ii) the collection of all ϕi is faithful, forms a

Grothendieck topology on AffR. We refer to this as the flat topology.

In the context of schemes over the integers, there are two topologies which are

closely related to the flat topology; both of which are obtained by imposing some

finiteness hypotheses on the covers of the flat topology. These related topologies

can also be defined in the broader context of affine N-schemes. We give these

definitions now.

Definition 3.31 (fpqc Topology). If R is an N-algebra, X := Spec(R), and I

is a set, then the collections Cov(X) of families (ϕi : Wi → X)i∈I such that (i)

each ϕi : Wi → X is flat, and (ii) there exists a finite subset J ⊆ I such that the

family (ϕj : Wj → X)j∈J faithful, forms a Grothendieck topology on AffR. We

refer to this as the fpqc topology.

Definition 3.31 of an fpqc topology and the proof that such covers form a

topology can be found in [41].

Definition 3.32 (fppf Topology). If R is an N-algebra, X := Spec(R), and I is

a set, then the collections Cov(X) of families (ϕi : Wi → X)i∈I such that (i) each

family is faithfully flat, and (ii) each morphism ϕi is finitely presented, forms a

Grothendieck topology on AffR. We refer to this as the fppf topology.

We already know that the flat topology is a topology. Therefore in order

to prove that the fppf topology is a Grothendieck topology it suffices to show
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the axioms of a cover behave well with respect to finite presentations. Any

isomorphism of N-algebras is finitely presented. Moreover, the composition of

finitely presented algebras is also finitely presented. Therefore it remains to

determine whether the pull-back of finitely presented algebra is finitely presented;

this follows from Example 2.74.

Remark 3.33. Notice that the fpqc and fppf topologies are both defined to be

flat topologies with extra structure. Because of this, just as we would say in the

study of topological spaces, we refer to the flat topology on AffN as being a finer

topology than both the fpqc and the fppf topology.

If X is an affine scheme over Spec(Z), then the quasi-compactness of X in

the Zariski topology and the Zariski-open image of finitely presented morphisms

allows us to conclude that any fppf cover is in fact an fpqc cover. However we

don’t (yet) have these results for schemes over Spec(N).

Question: If X is an affine N-scheme and (Ui → X)i∈I is an fppf cover of

X, then is (Ui → X)i∈I necessarily an fpqc cover of X? That is to say, is there a

finite subset J ⊆ I which is faithful over X?

In this thesis we will often refer to phenomena happening “locally” on an

affine N-scheme. This means the phenomena happens after pulling back along

some covering family of the affine N-scheme; either one of the three topologies

defined above can be used to consider this type of “local” behaviour. Moreover,

many properties of affine N-schemes and the morphisms between them can be

checked locally; that is to say, we can check whether the property, P , of an (or, a

morphism of) affine N-scheme(s) holds after pulling-back along a covering family

from one of the previous topologies.

For us the key sense of locality for property checking will be “flat-local”. We

say a property P of a morphism f : Y → X is flat-local if it can be checked after

pulling-back along a flat covering family of X. Notice that due to the relative

fineness of the flat, fpqc, and fppf topologies a flat local property can be checked
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after passing to an fpqc or fppf covering family, as they are both flat covers. The

next lemma proves that flatness is a flat, and hence fpqc and fppf, local property.

Lemma 3.34 (Flatness is Flat Local). If f : Y → X is a morphism of affine

N-schemes and (Ui → X)i∈I is a flat cover of X, then Y is flat over X if and

only if each Y ×X Ui → Ui is a flat morphism of N-schemes.

Proof. Let X = Spec(R) and Y = Spec(A) and f ∗ : R → A be the structure

morphism of the R-algebra A. Furthermore, we may assume Ui = Spec(Ci)

for some flat R-algebras Ci. With this notation we may consider the following

diagram in AlgR.

R
Ci

A
A⊗R Ci

flat

flat

flat

The morphisms R→ Ci are flat by definition and the morphisms A→ A⊗RCi are

flat since these are a base change of the flat maps R→ Ci. Finally, the morphisms

Ci → A⊗R Ci are flat by assumption. Furthermore the families (R→ Ci)i∈I and

(A→ A⊗RCi)i∈I are faithful. The latter family is faithful as it is the base change

of a faithful family.

Let us suppose the following is an equalizer diagram of R-modules

E M N (?)

We want to show the diagram obtained by extending scalars along f ∗ : R→ A

E ′

A⊗R E

A⊗RM A⊗R N (??)

g
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is an equalizer diagram. We have denoted the equalizer of this diagram E ′. In

this case there is a morphism g : A ⊗R E → E ′. We will prove that this mor-

phism becomes an isomorphism after extending scalars further along the faithful

flat cocover (A→ A⊗RCi)i∈I and hence itself must be an isomorphism. Extend-

ing scalars this way around the commutative diagram is equivalent to extending

scalars first along R→ Ci and then Ci → A⊗RCi. Since each of these morphisms

are flat, they preserve the equalizer of (?). Extending scalars in this way yields

(E⊗RA)⊗RCi as the equalizer. Therefore E ′⊗A (A⊗RCi) ∼= (E⊗RA)⊗RCi, as

these are the equalizers obtained by extending scalars around both branches of

the commutative diagram. Finally we note A⊗RE becomes, along the extension

A → A ⊗R Ci, (A ⊗R E) ⊗A (A ⊗R Ci) ∼= (E ⊗R A) ⊗R Ci. This proves E ′ and

A⊗RE become isomorphic after extending scalars along a flat cocover and hence

themselves must be isomorphic. Thus A does preserve the equalizer and hence is

a flat R-algebra. �

The following remark is an aside to the main goal of the present thesis, but

an important note for further studies into the arithemtic algebraic geometry of

N-algebras. All new terms will not be defined here, but references will be given

for the topics considered.

Remark 3.35. Given a category C and a Grothendieck topology τ , the pair (C, τ)

is referred to as a site. With this structure one can define the notion of a sheaf

on a site as certain functors F : Cop → set with a glueing condition: sections can

be glued together from local (in the sense of the topology τ) sections [26]. The

category of all such sheaves on a site form a Grothendieck topos. Toposes are

well behaved, set-like categories. One of the revelations following Grothendieck’s

work is that arithemtic algebraic geometry is best considered as happening inside

the topos of sheaves on the étale (or fpqc, or fppf) site.

In Au-dessous de Spec(Z) Toën–Vaquiè explore these ideas in a broader setting

which includes the category of N-algebras. They define a Zariski topology and an

fpqc topology on AffN analogous to that for schemes over Z. Furthermore they
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prove each affine N-scheme is naturally a sheaf on the fpqc site (AffN, τfpqc) and

glue these together along the Zariski topology to form non-affine N-schemes.2 In

this way we can see that the topos theoretic formalism of the study of schemes

over Z carries over naturally to the broader context of schemes over N.

Before we move on to the study of finite étale morphisms of N-schemes we will

present some results about the local nature of particular morphisms of N-schemes.

Definition 3.36 (Idempotent Immersion). If N is a finite set, R =
∏

i∈N Ri is a

product of finitely many N-algebras Ri, and πj :
∏

i∈N Ri → Rj is the projection

onto Rj, then we refer to the corresponding map of N-schemes π∗j : Spec(Rj) →∐
i∈N Spec(Ri) as idempotent immersions.

Remark 3.37. Lemma 2.99 tells us that idempotent immersions are flat mor-

phisms of N-schemes.

In the next lemma we will prove that the property of being an idempotent

immersion can be checked flat locally3.

Lemma 3.38. If R,A are N-algebras and f : R→ A is an N-algebra homomor-

phism, then f : R → A is an idempotent immersion if and only if there exists a

flat cocover (iα : R → Cα)α∈S such that f |α : Cα → A ⊗R Cα is an idempotent

immersion.

Proof. Let Aα := A⊗R Cα, Cαβ := Cα⊗R Cβ, and Aαβ := A⊗R Cαβ. Let us first

suppose that each fα : Cα → Aα is an idempotent immersion. This means (i) for

each α ∈ S there exists a finite set Tα and a family of idempotents (eαi )i∈Tα ⊆ Cα

2It is known that the flat topology, as defined in this thesis, is not subcanonical. That is,

there are representable functors which are not sheaves for the flat topology. Angelo Vistoli

provides an example in Remark 2.56 of [2]. So it is necessary to use the fpqc topology over the

flat topology when developing sheaf theory and the theory of non-affine N-schemes.
3If a property is flat local, then it is also fpqc and fppf local. We will leave this assumed

from now on. When ever a property is shown to be flat local, we know that it is both fpqc and

fppf local.
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such that they are mutually orthogonal and sum to unity in Cα, which implies

(ii) for each α ∈ S we have Cα =
∏

i∈Tα B
α
i , where Bα

i = Cα/(e
α
i = 1), and finally

(iii) there exists j ∈ Tα such that Aα = Bα
j and fα = παj :

∏
i∈Tα B

α
i → Bα

j .

For each α ∈ S we have distinguished idempotents eα := eαj and eα :=
∑

i 6=j e
α
i

in Cα, which generate distinguished sub-Cα-modules Iα := 〈eα〉 and Iα := 〈eα〉.

In fact these distinguished sub-modules arise as the equalizers of the following

diagrams

Iα Cα Cα.
θ

0

where the morphism of Cα-modules θ is defined by θ(eα) = 0 and sending the

other generating idempotents to themselves. Furthermore, Iα is the equalizer of

the following diagram

Iα Cα Bα
j .

παj

0

In order to prove f is an idempotent immersion we need to prove there is

an idempotent in R onto which f projects. To do this we will prove that the

constructions of eα and eα descend to R. In order to do this it suffices to show

these constructions are stable under refinement — since they generate sub-Cα-

modules of Cα (for each α) we do not need to check any cocycle condition in order

to glue the modules together.

Over each Cα we have Iα and Iα and over Cαβ we have (by the analogous

construction) Iαβ and Iαβ. In fact the diagrams that each Iαβ are equalizers of

are precisely the base-change along Cα → Cαβ of the diagram for which Iα is

the equalizer of. Since the morphism Cα → Cαβ is flat - by definition of the Cα

forming a cocover of R - we know that the equalizers must be preserved under

base change. Therefore for each α, β ∈ S we know Iαβ = Iα ⊗Cα Cαβ, hence

〈eαβ〉 = 〈eα〉 ⊆ Cαβ. Similarly, α, β ∈ S we know Iαβ = Iα ⊗Cα Cαβ, hence

〈eαβ〉 = 〈eα〉 ⊆ Cαβ. Lemma 2.53 proves eαβ = eα and eαβ = eα.
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Since the idempotents agree at Cαβ they descend to elements e, e ∈ R - It

remains to show they are idempotents and f : R→ A acts by projection onto e.

In order to do this we note that the morphism g : R → R/〈e = 1〉 × R/〈e = 1〉

becomes an isomorphism over the faithful cover of Cα, thus it must itself be an

isomorphism. Hence e, e are orthogonal idempotents which sum to unity. In order

to show f is an idempotent immersion, we need only note the commutativity of

the following diagram, as this proves that f must project onto e.

A

R

∏
α∈S Aα

∏
α∈S Cα

f
∏
fα

Therefore we may conclude that if f is flat locally an idempotent immersion, then

it is globally. �



Chapter 4

Finite Étale Morphisms

This chapter presents one of the main theorems of this thesis: that of the existence

and structure of the étale fundamental group of an affine N-scheme. In the

introduction of this thesis we discussed the ingredients required to formulate this

theory; a notion of covering space and a notion of point. Initially this chapter

provides these ideas to build the necessary framework. In the final sections of

the current chapter we define the étale fundamental group of an affine N-scheme,

discuss a number of its properties, and consider some examples coming from

algebraic number theory.

4.1 Finite Étale Morphisms

In this section we formalise the phrase “category of covering spaces” of an affine

N-scheme. Recall that a morphism f : Y → X of topological spaces is a finite

covering space if there exists an open cover (Ui → X)i∈I and finite sets Ni for

each i ∈ I such that Y ×X Ui ∼=
∐

Ni
Ui. Indeed the diagram below

X
Ui

Y
Y ×X Ui ∼=

∐
Ni
Ui

65
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represents this behaviour when interpreted in the category of topological spaces.

All that is required of us is to interpret this diagram in the category of affine N-

schemes. In particular, we need to specify what it is that we mean by an “open

cover” of an affine N-scheme X. In the literature on schemes over Spec(Z) the

property of a morphism f : Y → X being étale is typically defined point-wise

on the base scheme X: either using differentiation [38] or ramification of fibers

[40]. These point-wise definitions are not immediately available to us from our

functorial point of view of affine schemes over the natural numbers. However,

one can show this point-wise definition of finite étale for schemes over Spec(Z) is

equivalent to saying there is an fppf cover (Ui → X)i∈I of X such that for each

i ∈ I we have an isomorphism Y ×X Ui ∼=
∐

Ni
Ui (Proposition 5.2.9 p 155. [40]).

That is to say, we can interpret the diagram on the previous page by saying an

“open cover of X” is an fppf coverage of X.

Definition 4.1 (Finite Étale Morphism). Let f : Y → X be a morphism of affine

N-schemes. If there exists an element (Ui → X)i∈I of the fppf topology on AffN

and finite sets Ni for each i ∈ I such that Y ×X Ui ∼=
∐

Ni
Ui as Ui-schemes, then

we say that f : Y → X is a finite étale morphism.

If f : Y → X is a finite étale morphism, then we may say Y is finite étale over

X. Or we may refer to the morphism f itself and say f is a finite étale morphism

of affine N-schemes. If Y → X is of the form Y ∼=
∐

N X for some set N , then

we say that Y is totally split over X. Thus, further to our choice of notations,

we may refer to finite étale morphisms as fppf locally totally split morphisms, or

locally totally split morphisms. We denote the subcategory of affine N-schemes

over X with objects as finite étale morphisms over X and all morphisms between

them by FÉtX .

Example 4.2. If X, Y are affine schemes over Spec(Z), then a morphism of affine

N-schemes f : Y → X is finite étale in the sense of Definition 4.1 if and only if it

is finite étale in the sense of Grothendieck’s original definition. This is shown in,

for example, Proposition 5.2.9 in [40].
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Example 4.3. If X = Spec(R) is an affine N-scheme and Y ∼=
∐

N X, for some

finite set N , then the morphism f : Y → X induced by the R-algebra morphism

f ∗ : R→ RN is a finite étale morphism. Indeed this morphism is already totally

split, so it remains totally split along the fppf cover (id : X → X).

Section 4.2 contains many more examples of finite étale morphisms. For now

we will make a few remarks about the choice of definition and then move onto

study properties of finite étale morphisms.

Remark 4.4. It was mentioned in the introduction that Connes and Borger had

discussed how the theory of the fundamental group could extend to semirings

and semiring-schemes. Connes suggested (following Bhargav Bhatt and Peter

Scholze in [7]) that a map f : Y → X should be considered étale if both f and

∆ : Y → Y ×X Y are flat and Y is finitely presented over X. Indeed, a finite

étale map (as defined in this thesis) has this property, as flatness is flat local,

and this property is satisfied locally. It would be interesting to know if these are

equivalent definitions.

Remark 4.5. Chapter 3 introduced three different topologies on AffN. Our

definition of finite étale follows the definition over Spec(Z). However, it begs the

question: does the choice of topology matter? We could instead interpret “open

cover” of X to mean the existence of a flat coverage of X or an fpqc coverage of

X. For each (including the choice we made) of these choices we obtain, a priori,

three different notions of finite étale and hence three different categories. Which

would result in three different étale fundamental groups. Thus we ask: are the

étale fundamental groups obtained from the three topologies on AffN isomorphic?

Given the natural duality between AffN and AlgN it makes sense to consider

what this picture looks like in the opposite category. The definition that follows is

the dual of the previous definition; but the difference in notation and terminology

is helpful to have at hand.
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Definition 4.6 (Finite Étale Algebra). Let f : R→ A be an R-algebra. If there

exists an element (Ui → Spec(R))i∈I of the fppf topology on AffN and finite sets

Ni for each i ∈ I such that A⊗RO(Ui) ∼=
∏

Ni
O(Ui), then we say that f ∗ : R→ A

is a finite étale R-algebra.

Similarly, we may refer to finite étale R-algebras f : R → A by saying A is

finite étale over R. Or, that the structure morphism f is a finite étale morphism.

Of course, because these definitions are duals of one another, we know if f :

Y → X is a finite étale morphism of N-schemes, then the induced morphism

f ∗ : O(X) → O(Y ) is a finite étale O(X)-algebra. Moreover, if f ∗ : R → A

is a finite étale R-algebra, then the induced morphism f : Spec(A) → Spec(R)

is a finite étale morphism N-schemes. If R is an N-algebra, then we denote the

category of finite étale algebras FÉtR:=FÉtSpec(R)
op. Note: one refers to the

subscript to know whether or not the morphisms are to be interpreted as algebra

morphisms or R-scheme morphisms.

Remark 4.7 (Finite Étale Implies Flat). Since finite étale morphisms are fppf

locally totally split, they are flat locally totally split, and hence flat locally free.

In particular, they are flat locally flat, since all free modules are flat. Moreover,

Lemma 3.34 tells us flatness is a flat local property, therefore all finite étale

algebras are flat algebras.

In order to understand the structure of FÉtX for some affine N-scheme X

we first will give a number of lemmata related to finite étale morphisms and the

morphisms between them.

Lemma 4.8 (Finite Étale Stable Under Base Change). If f : Y → X is a finite

étale cover of X and g : Z → X is any morphism of affine N-schemes, then

Y ×X Z → Z is a finite étale cover.

Proof. If (hi : Ui → X)i∈I is the fppf cover of X over which Y splits, then the

pull back of this cover (hi × idZ : Ui ×X Z → Z)i∈I is an fppf cover of Z over

which Y ×X Z will split. �
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Lemma 4.9 (Finite Étale Flat Local on Base). If f : Y → X is a morphism of

N-schemes and (gi : Ui → X)i∈I is a fppf cover of X, then f : Y → X is a finite

étale morphism if and only if, for each i ∈ I, the morphisms fi : Y ×X Ui → Ui

are finite étale.

Proof. If each fi is a finite étale morphism, then there exist fppf covers

(hij : Wij → Ui)j∈Ji over which each of the morphisms fi become totally split.

Since compositions of fppf covers form fppf covers, this means there exists a fppf

cover of X over which the morphism f : Y → X becomes totally split i.e. Y is

finite étale over X. �

Lemma 4.10. If X is an affine N-scheme and ϕ :
∐

N X →
∐

M X is a morphism

of N-schemes induced by a set map ϕ̃ : N →M , then ϕ is a finite étale morphism.

Proof. Since the property of being finite étale is flat local on the target we may

pull back along the fppf cover (m : X →
∐

M X)m∈M in order to check whether

or not the morphism is finite étale; Lemma 2.99 and Lemma 2.100 tell us this

a fppf cover. Indeed, over the mth component we simply get ϕ̃−1(m) copies of

X over X. Thus each of the pull backs are finite étale. Therefore the original

morphism must be finite étale. �

In a similar vein we see piecing together finite étale morphisms gives us finite

étale morphisms.

Lemma 4.11. If (fi : Yi → Xi)i∈I is a family of finite étale covers index by a

finite set I, then the induced morphism
∐

i∈I fi :
∐

i∈I Yi →
∐

i∈I Xi is a finite

étale morphism.

Proof. Lemma 4.9 says it suffices to consider the question over some fppf cover

of X. Indeed the family (gj : Xj →
∐

i∈I Xi)j∈I is (by Lemma 2.99 and Lemma

2.100) an fppf cover of
∐

i∈I Xi. Pulling
∐

i∈I fi back along each of these yields

a finite étale morphism. Therefore the original morphism must in fact be finite

étale. �
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Remark 4.12. The converse of this lemma is true. If
∐

i∈I fi :
∐

i∈I Yi →
∐

i∈I Xi

is finite étale, then each fj for j ∈ I is finite étale. Each fj can be realized as

a pull-back of the coproduct of the fj i.e. a pull-back of a finite étale map.

Therefore each fj is finite étale.

If R1, R2 are N-algebras, then there are two projection morphisms

π∗1 : R1 × R2 → R1 and π∗2 : R1 × R2 → R2. In the opposite category these

morphisms πi : Spec(Ri) → Spec(R1)
∐

Spec(R2) will be referred to as idempo-

tent immersions. In general one can consider any finite family Ri indexed by a

finite set I and the corresponding projection morphisms, these too are said to

be idempotent immersions. Next we will prove idempotent immersions are finite

étale.

Lemma 4.13. If (Xi)i∈I are a collection affine N-schemes, then the morphisms

Xj →
∐

i∈I Xi are finite étale.

Proof. Observe (fj : Xj →
∐

i∈I Xi)j∈I is an fppf cover of
∐

i∈I Xi. Since the

property of being finite étale is flat local on the target, it suffices to check whether

a given fj is finite étale after pulling back along each f`.

Since each Xi is affine we know there are N-algebras Ri such that

X ∼= Spec(Ri). In the opposite category f ∗j :
∏

I Ri → Rj is the projection onto

the jth component. In order to determine whether or not f ∗j is finite étale after

pull back to f` we need to determine the pushout of the following diagram

∏
I Ri

Rj

R`

Rj ⊗∏
I Ri

R`

In the case that j 6= ` one need only consider the image of the the element

ej = (0, 0, . . . 1, . . . , 0) which is 1 in the jth column and 0 else where, under both

paths to the pushout. On the other hand, via Rj the element ej is sent to the

multiplicative identity; the other way it is sent to the additive identity. Therefore,



4.1. FINITE ÉTALE MORPHISMS 71

in the pushout, 1 = 0. In the case j 6= ` the pushout is 0. In particular, it is

finite étale over R`.

It remains to consider the case j = `. By the universal property of pushouts,

a morphism Rj ⊗∏
I Ri

Rj → C, to some (test object) algebra C, is equivalent to

giving two morphisms α : Rj → C and β : Rj → C such that α ◦ f ∗j = β ◦ f ∗j .

Claim: α must be equal to β. For, if α 6= β, then there exists an x ∈ Rj such that

α(x) 6= β(x). This implies, by the surjectivity of f ∗j , that there exists a y ∈
∏

I Ri

such that x = f ∗j (y) and hence α(f ∗j (y)) 6= β(f ∗j (y)), contradicting the choice of

α, β. That is to say, a morphism out of the tensor product, is the same thing as

a morphism out of Rj. Yoneda lemma allows us to conclude Rj
∼= Rj ⊗∏

I Ri
Rj.

In particular, the pullback of f ∗j is finite étale. Finally, we may conclude that the

original, idempotent immersion, is finite étale. �

Next we prove that compositions of finite étale morphisms are themselves

finite étale. First we deal with a special case, and then prove that the special

case implies the general.

Lemma 4.14. If f : Y →
∐

I X is finite étale and 4 :
∐

I X → X is the

morphism of N-schemes induced by the diagonal, then the composition Y → X is

finite étale.

Proof. Since f is finite étale, there exists an fppf covering family of
∐

I X given

by (gk : Uk →
∐

I X)k∈K over which Y splits, Y ×∐
I X

Uk ∼=
∐

Nk
Uk. Note the

family (4 ◦ gk : Uk → X)k∈K is an fppf family — this follows from the fact that



72 CHAPTER 4. FINITE ÉTALE MORPHISMS

it is a composition of fppf covering families. In fact, Y splits over this family

Y ×X Uk ∼=

(
Y ×∐

I X

∐
I

X

)
×X Uk

∼= Y ×∐
I X

(∐
I

X ×X Uk

)

∼= Y ×∐
I X

(∐
I

Uk

)

∼=
∐
I

(∐
Nk

Uk

)
.

Therefore we may conclude the composition of the given morphisms 4◦ f : Y →

X is finite étale. �

Lemma 4.15. If f : Z → Y and g : Y → X are finite étale morphisms of affine

N-schemes, then the composition g ◦ f : Z → X is a finite étale morphism.

Proof. We are free to choose an fppf cover (hi : Ui → X) over which Y splits into

Y ×X Ui ∼=
∐

Ni
Ui, for some finite sets Ni. If we pull f and g back along each hi

we see f × id : Z ×X Ui →
∐

Ni
Ui is a finite étale morphism. Since finite étale is

a flat local property, it suffices to show that the composition of the pull backs of

f, g are finite étale. However this is precisely what the previous lemma tells us.

Therefore, the composition g ◦ f of finite étale morphisms is finite étale. �

Later we will need to deal with quotients by group actions and other details

of that require a finer understanding of the local nature of a morphism between

two finite étale covers of a fixed affine N-scheme. The main problem we have

to overcome is the following: despite the fact that for each morphism of finite

étale N-schemes over X, f : Y → Z, there exists a cover of X which trivializes

Y and Z, we don’t yet know that f itself can be trivialized. That is to say, we

don’t know that f pulls back to a morphism between the sheets of the finite étale

covers. This behaviour is illustrated in the following example:

Example 4.16 (Can’t Assume Morphism is Trivial). LetX := Spec(R)
∐

Spec(R)

be an affine N-scheme. We can define the following morphism f : X →
∐

2X



4.1. FINITE ÉTALE MORPHISMS 73

which is not induced by a morphism from the singleton to the set with 2 elements.

This map is defined (in the algebra category) by mapping ((1, 1), (0, 0)) 7→ (1, 0)

and ((0, 0), (1, 1)) 7→ (0, 1). This induces a morphism f : X →
∐

2X which is

not defined by a morphism from the one sheet of X into some sheet of
∐

2X.

In order to get around this problem Grothendieck proves that one can always

refine the cover further in order to obtain a cover over which this cannot happen

[22]. However, his proof makes explicit use of the Zariski topology, which we have

not encorporated into our development of affine N-schemes. We will now prove

that we can always make such a refinement..

Let X = Spec(R) be an affine N-scheme, with f : Y → Z a morphism of

finite étale covers of X, and (gi : Ui → X)i∈I be an fppf cover of X over which

Y ×X Ui ∼=
∐

Ni
Ui and Z ×X Ui ∼=

∐
Mi
Ui, for some finite sets Ni and Mi. We

will now prove that we can refine this cover so that f acts by mapping sheets to

sheets; that is to say f is locally induced by a map of sets.

For now let us fix an i ∈ I and denote U := Ui, N := Ni, and M := Mi.

So we have a morphism f := fi :
∐

N U →
∐

M U . This induces a morphism

f ′ : U →
∐

MN U . Furthermore, since U is an affine N-scheme over X we know

U ∼= Spec(A) for some finitely presented R-algebra A, therefore f ′ is induced

by an R-algebra morphism f ′∗ : AM
N → A. Lemma 2.45 provides us with a

decomposition of A into a product of quotient semirings A ∼=
∏

MN Aα, where we

have forgone the subset defined in Lemma 2.45 and left in the possibility that

some of the quotients give the 0 semiring. In particular, Aα := A/〈f ′∗(eα) = 1〉.

Notice the Aα are finite quotients of a finitely presented R-algebra, and hence are

themselves finitely presented over R. Let us denote Eα := Spec(Aα). These Eα

should be thought of as the locus over which f is given by the set map α : N →M .

Since U ∼=
∐

αEα, we may conclude on the basis of Lemma 2.99 that each

morphism Eα → U is flat. Lemma 2.100 also tells us that the family is faithful.

Therefore we know that (Eα → U)α is an fppf cover. Moreover, we know that

compositions of covers are covers, therefore the collection of all Ei
α form an fppf
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cover of X.

In order to prove this cover splits f in the desired way, let us fix a morphism

β :
∐

N U →
∐

M U which is induced by a morphism β̃ : N → M . As before

this yields a morphism β∗ : AM
N → A. Furthermore, following Remark 2.85 we

know that this morphism is equivalent to the projection onto the βth component

which we denote πβ - we are making explicit use of the identification MN =

Homsets(N,M). In order to prove the given cover does split f , it suffices to show

f and β become equal after pull-back to Eβ. In other words, it suffices to prove

the identity i :
∐

N Eβ →
∐

N Eβ is the equalizer of the diagram

∐
N Eβ

∐
N Eβ

∐
M Eβ. (†)

f

β

id

In order to prove that this diagram is an equalizer diagram we will consider

the corresponding coequalizer diagram in the opposite category (the category of

algebras) which can be seen to be equivalent by (the Yoneda lemma and) the

following bijections of sets

HomAlgA

(∏
M

A,
∏
N

A

)
=
∏
N

HomAlgA

(∏
M

A,A

)

= HomAlgA

(∏
M

A

)⊗N
, A


= HomAlgA

(∏
MN

A,A

)
.

These equivalences lead to us to prove that the following is a coequalizer diagram

in the category of A-algebras.

A
∏

MN A.Aβ
f ∗

πβ

Let us denote the coequalizer O(E). We will now prove that it is isomorphic to

Aβ. By definition the coequalizer is given by the following quotient

O(E) :=
A

(f ∗(eα) = πβ(eα))α∈MN

.
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Lemma 2.45 gives us a decomposition for the semiring A which we substitute to

obtain ∏
γ∈MN

A
(f∗(eγ)=1)

(f ∗(eα) = πβ(eα))α∈MN

.

Which further simplifies as∏
γ∈MN

A

(f ∗(eα) = πβ(eα), f ∗(eγ) = 1)α∈MN

.

It remains to determine each factor of this product of semirings.

1. First let us consider the case γ = β, then the equivalence relation is given

by the following family of relations:

(f ∗(eα) = πβ(eα), f ∗(eβ) = 1)α∈MN .

If α = β, then f ∗(eβ) = 1 determines the relation f ∗(eβ) = πβ(eα). Sim-

ilarly, in the case α 6= β, the relation f ∗(eβ) = 1 determines the other

relationships. Therefore each f ∗(eα) = πβ(eα) is redundant. Therefore we

see the factor corresponding to γ = β is precisely the semiring Aβ derived

above.

2. Now let us find the quotient in the case γ 6= β. This case is also split into

the subcases α = β and α 6= β. In the case α = β the family of equivalence

relations is :

(f ∗(eα) = πβ(eα), f ∗(eγ) = 1)α∈MN .

Since πβ(α) = 1 in this case, we see f ∗(eα) = 1 and f ∗(eγ) = 1. As

α = β 6= γ0, we conclude 1 = f ∗(eα)f ∗(eγ) = f ∗(eαeγ) = 0 is an element

of the family of equivalence relations. Thus the corresponding quotient is

isomorphic to the 0 semiring. Finally, if α 6= β, then the family of relations

defining this quotient is:

(f ∗(eα) = 0, f ∗(eγ) = 1)α∈MN

As α ranges over all elements of MN , we know the relation 1 = 0 is in the

family and hence the quotient is the 0 semiring.
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Therefore we may conclude O(E) = Aβ. Furthermore, the correpsonding diagram

of N-schemes

∐
N Eβ

∐
N U

∐
M U . (?)

f

β

i

is an equalizer diagram. In order to conclude that the original diagram (†) is an

equalizer it suffices to notice that it is the pullback of (?) along the flat morphism

Eβ → U . Since the morphism is flat, the equalizer is preserved. Therefore the

equalizer of (†) is
∐

N Eβ, as required. We now know that for a given morphism

f : Y → Z of finite étale schemes over X, there exists an fppf cover of X over

which Y and Z split and f is given by mapping sheets over Y to sheets over Z

i.e. the morphism f is determined by a set map. We state this formally in the

next lemma.

Lemma 4.17. If iY : Y → X and iZ : Z → X are finite étale morphisms and

f : Y → Z is a morphism of schemes over X, then there exists an fppf cover

(hi : Ui → X)i∈I and families of finite sets (Ni)i∈I and (Mi)i∈I such that for each

j ∈ I, (i) Y ×X Uj ∼=
∐

Nj
Uj (ii) Z×X Uj ∼=

∐
Mj
Uj and (iii) f × id is equivalent

to a morphism induced by a set map αj : Nj →Mj.

Proof. This follows from the case where S = {?} is the one-point set given above,

since the property of a morphism being totally split is stable under pullback. Thus

we can always take a common refinement to obtain the desired cover. �

This fact about the local nature of morphisms between finite étale covers

allows us to prove the following lemmata which are indispensable in the proof

of the main theorem of this chapter; the first of which states that morphisms

between finite étale covers X are themselves finite étale.

Lemma 4.18. If f : Y → X and g : Z → X are finite étale covers of X and

h : Y → Z is a morphism of affine N-schemes such that f = gh, then h is a finite

étale morphism i.e. Y is a finite étale cover of Z.
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Proof. Since h is flat locally given by a set map, Lemma 4.10 allows us to conclude

h is flat locally finite étale. Moreover, this means h is finite étale. �

Before we move onto some examples of finite étale morphisms over specific

affine N-schemes we record an observation about the nature of the fppf cover

that splits an affine N-scheme over (the spectrum of) a ring.

Remark 4.19. If X = Spec(R) is the spectrum of a ring R (with no idempotents

i.e. X is connected) and f : Y → X is finite étale over X, then we may simplify

the fppf cover (Ui → X)i∈I which splits affine scheme Y . Since each of the

morphisms Ui → X are finitely presented, their image in X (which we denote as

Ui) is a Zariski open subscheme of X. Furthermore, as X is an affine scheme we

know that each open cover has some finite subcover. Therefore only finitely many

of the fppf covers of X are required to form an fppf coverage of X. Thus we may

restrict to considering (Uj → X)j∈J for some finite subset J ⊆ I. In fact we can

take the coproduct of these finitely many Uj to form a single finitely presented

affine scheme U =
∐

J Uj and the associated fppf coverage (U → X). This one

morphism is flat, finitely presented, and splits the morphism f : Y → X. In light

of this we see that in the case f : Y → X is a morphism over a connected affine

scheme X, it suffices to consider fppf coverages consisting of one morphism when

determining whether or not f is finite étale.

4.2 Examples

Example 4.20 (Finite Étale Morphisms over Spec(B)). Suppose the morphism

of affine N-schemes f : X → Spec(B) is a non-empty finite étale B-scheme — if X

is empty, then X is isomorphic to the empty coproduct of copies of Spec(B). This

means there exists an fppf cover (gi : Ui → Spec(B))i∈I over which f becomes

trivial. Since the gi form a faithful cover, there exists j ∈ I such that Uj 6= ∅.

Golan’s theorem (Theorem 2.41) tells us there exists a morphism x : Spec(B)→
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Uj — there can be no such map from the spectrum of a field, as this would

correspond to a semiring map from B to a field.

∐
Nj
Uj

Uj
Spec(B)

∐
Nj

Spec(B)

Spec(B)

X

The composition along the bottom (the identity) is an isomorphism, therefore

the top row must also be an isomorphism. It follows that X ∼=
∐

Nj
Spec(B); that

is to say, X is totally split. Therefore all affine N-schemes that are finite étale

over Spec(B) are totally split.

Example 4.21 (Finite Étale over a Field). Let F be a field and the morphism

f : Spec(A) → Spec(F ) be a finite étale morphism, then A ∼=
∏n

i=1Ei, where

Ei/F are finite separable extensions of F .

In order to prove this we first we note that a finite étale morphism must in fact

be finitely generated. That is to say, A is a finite dimensional vector space over

F — Remark 4.19 allows us to assume the cover which splits Spec(A) consists

of one morphism g : U → Spec(F ), where U = Spec(C) for a non-zero finitely

presented F -algebra. Moreover, this implies A⊗F C ∼= CN is a finite dimensional

F -algebra and hence A ↪→ CN must also be a finite dimensional F -algebra. All

finite dimensional algebras over a field F are of the following form

A ∼=
n∏
i=1

A/mN
i .

Considering the following diagram shows all finite étale algebras must embed

inside a reduced ring and hence themselves must be reduced

∏
N C

C
Cred

∏
N Cred

F

A
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Since F is a field and Cred 6= 0, we know F → Cred is injective. Moreover, A is

flat over F , therefore the morphism A →
∏

N Cred is also injective. Therefore A

is a reduced ring. This implies N = 1 and hence A ∼=
∏n

i=1 A/mi. It remains

to prove each of these field extensions of F are in fact separable. It suffices to

show each A/mj ⊗F F ∼=
∏

Ij
F , for some finite set Ij, where F is an algebraic

closure of F . In order to prove this is the case, consider the following diagram of

F -algebras

F

∏
N A/mi

A/mj

C

∏
N C/mi

C/mj

F

∏
M F

∏
Ij
F

Since C is finitely presented over F , Hilbert’s Nullstellansatz guarantees us a

morphism C → F , which is the map given in the preceding diagram. Each

square in the above diagram is a pushout (tensor product), in particular, we

obtain the required isomorphism A/mj ⊗F F ∼=
∏

Ij
F for some finite set Ij. In

fact, Ij is isomorphic to the number of roots in F of the polynomials that generate

the maximal ideal mj in C. Therefore each A/mi is a finite separable extension

of F and A is a product of finite separable extensions of F .

Remark 4.22. The fact that A is finitely presented over F in Example 4.21

is true more broadly. If A is finite étale over a ring R, then A must in fact

be finitely presented over R. This can be shown by proving finite presentation

descends along faithfully flat covers.

Example 4.23 (Finite Étale over the Integers). If Spec(A)→ Spec(Z) is a finite

étale morphism, then A ∼=
∏

N Z, for some finite set N . In particular, if A is

connected, then A ∼= Z.

Indeed, if we assume A 6= Z is a non-zero connected finite étale algebra over Z,

then it is a finitely generated Z-module. Moreover, by extending scalars along the
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flat injective morphism Z → Q, we see (following Example 4.21) A is a subring

of AQ =
∏

N Ei, for number fields Ei. As A is connected and non-zero, we know

|N | = 1. Therefore, all connected non-zero finite étale algebras A over Z are

orders in a number field i.e. there exists an order O in a number field E such

that A ∼= O ⊆ E. Minkowski’s theorem implies there that there exists at least

one prime p ∈ Z which ramifies in O. This implies A ⊗Z Fp contains nilpotent

elements, and hence is not finite étale over Fp. This contradicts the fact that

being finite étale is preserved along any base change. Therefore, A can’t be finite

étale over Z. So the only connected finite étale algebras over Z is Z itself.

4.3 Geometric Points

With the notion of (covering space) finite étale morphism in hand, all that remains

to develop the étale fundamental group of an N-scheme is to define what we mean

by a “point”. Euclid was clear when he said a point is that which has no part ;

interpreting this in the language of N-schemes a point should be something that

has no non-trivial quotients/congruence relations. Theorem 2.41 tells us that the

only affine N-schemes with this property are Spec(k), for k a field, and Spec(B).

However, this is not enough for our purposes. Points should be simply con-

nected, that is to say, they should not have any non-trivial covering spaces. Ex-

ample 4.21 shows us that fields can have non-trivial finite étale covers, thus we

should not expect all fields to act exactly like points. For this reason we restrict

the denotation of point to separably closed fields. Notice, Example 4.20 shows

the Boolean semiring does not have any non-trivial finite étale covers, so this too

should be considered a point. We make this discussion precise with the following

definition.

Definition 4.24 (Geometric Morphism). Let X be an affine N-scheme. If p is a

simple affine N-scheme with no non-trivial finite étale morphisms and i : p→ X

is a morphism of affine N-schemes, then we say (p, i) is a geometric morphism
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into X.

We will often refer to a geometric morphism i : p→ X simply as a (geometric)

point of X, or we may refer to the N-scheme p itself as a (geometric) point of

X. However the following remark suggests we should be cautious when using this

abbreviation.

Example 4.25. The affine N-scheme Spec(B) has a unique (up-to unique iso-

morphism) point determined by the identity morphism of N-algebras i : B→ B.

Remark 4.26. Recall that we have defined an N-scheme to be a functor from

the category of N-algebras to the category of sets. Given an N-scheme X and an

N-algebra C, we refer to the elements of the set X(C) as C-points. This sense

of point is a broader sense to that of a point in the sense of Definition 4.24.

Geometric morphisms are elements of X(B) and X(k), for k a separably closed

field.

We have singled out these special geometric morphisms as they are morphisms

that provide the notion of point required in the development of the étale funda-

mental group. Indeed, the following theorem proves such a morphism provides

us with the functor to sets (finite sets) that we require. More generally, it proves

the category of finite étale morphisms over any affine N-scheme, X, is equivalent

to the category of sets if all finite étale morphisms over X are trivial.

Lemma 4.27. If X = Spec(R) is a non-empty affine N-scheme such that all

finite étale covers of X are of the form f :
∐

N X → X, for some finite set N ,

then the functors

HomFEtX
op(−, R) : FEtX

op → sets

Homsets(−, R) : sets→ FEtX
op
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together with the natural isomorphisms

η : idFEtX
op → Homsets(−, R) ◦ HomFEtX (−, R)

ε : idsets → HomFEtX (−, R) ◦ Homsets(−, R)

which are defined, on objects, by the following collection of morphisms

η(A) : A→ Homsets(HomFEtX
op(A,R), R)

where, a 7→ eva := [f 7→ f(a)]

ε(S) : S → HomFEtX
op(Homsets(S,R), R)

where, s 7→ evs := [f 7→ f(s)]

constitute an (anti) equivalence of the category of finite étale covers of X

(FEtX) and finite sets (sets).

Proof. We need the non-empty assumption: for if X = ∅, then all finite étale

N-schemes over X are isomorphic to X. Therefore the category of them is not

sets. Most of the detail is given in the definition of the functors and natural

transformations, unpacking these yields the result. We need the totally split

assumption in order for the functors to be essentially surjective. However, we

will prove the not immediately obvious fact that for a finite set S ∈ set, the set

of homomorphisms Homset(S,R) is a finite étale R-algebra. In fact, we will prove

Homset(S,R) ∼= RS.

First we note the algebra structure on these functions is given by componen-

twise addition and multiplication. In particular this means the additive iden-

tity is given by ∀s ∈ S : s 7→ 0R while the multiplicative identity is given by

∀s ∈ S : s 7→ 1R. In order to prove that this algebra is isomorphic to RS it

suffices to find a family of orthogonal idempotents that generate the R-algebra

of functions and sum to the identity function. The elements of this family of

functions are defined in the following manner:

∀s ∈ S es : S → R es(t) := δst.
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If s 6= t, then eset(x) = δsxδtx = 0, since one of the delta functions must vanish.

Hence s 6= t implies eset = 0 i.e. these functions are orthogonal. Each of these

functions are idempotents, for e2
s(x) = es(x)es(x) = δsxδsx = δsx = es(x). If we

sum the entire family (es)s∈S we obtain the identity function s 7→ 1R - If x ∈ S,

then (
∑

S es)(x) =
∑

S(es(x)) = δxx = 1R. All of the terms in the sum vanish,

except for the term ex(x) corresponding to s = x in the summation index. Finally,

the family can be seen to generate as an R-algebra the entire set of functions.

For each function f : S → R, we know f(t) = rf,t ∈ R. With this notation at

hand we know f =
∑

s∈S rf,ses, and hence that the family (es)s∈S is generates

(over R) the algebra Homsets(S,R). �

Since geometric points satisfy the hypotheses of Lemma 4.27 we know that

pulling back to the category of finite étale morphisms over a fixed affine N-scheme

X along such a point does provide us with a functor to sets.

Remark 4.28 (N-Schemes and the B point). We return now to Theorem 2.41 to

discuss its geometric interpretation. When we broaden our category to include the

(opposite of the) category semirings we might ask: how many (geometric) points

does this extension add? Theorem 2.41 and Example 4.20 tell us that we only

add one point by doing this extension. Namely, the (spectrum of the) Boolean

semiring B. This suggests the Boolean semiring B is central to the geometry of

semirings, in particular, the natural numbers; it marks the difference between

those affine N-schemes over Spec(Z) and those which do not live over Spec(Z).

4.4 Étale Fundamental Group of an N-Scheme

We are now in a position to define the étale fundamental group of a connected

affine N-scheme at a point (geometric morphism) x : p→ X.

Definition 4.29 (Étale Fundamental Group of an N-Scheme).

If X is an affine N-scheme and x : p → X is a geometric morphism to X,

then we obtain the following functor: − ×X p : FEtX → sets. We define the
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étale fundamental group of X at the point p to be πÉt
1 (X, p) := Aut(−×X p) the

automorphism group of the functor −×X p : FEtX → sets.

Naturally we hope that this group has many of the properties of the Ga-

lois group of a field — pro-finiteness — or the fundamental group of a topo-

logical space — independence (up to canonical isomorphism) of choice of geo-

metric (base) point. In the next section we will see that the group πÉt
1 (X, p)

behaves as hoped and that these properties are a result of the fact that the pair

(FEtX ,−×X p), forms a Galois category.

4.5 Galois Category

Grothendieck’s work on the étale fundamental group culminated in a category

theoretic characterisation of the phenomena of covering spaces and their relation

to the fundamental group. This statement of the axioms of a Galois category

is translated, from the original French, directly from Grothendieck’s exposition

[22].

Definition 4.30 (Galois Category). Let C be a category and F a covariant

functor from C to sets, the category of finite sets. We say that C is a Galois

category with fundamental functor F if the following six conditions are satisfied:

(G1) There is a terminal object in C, and the fibred product of any two objects

over a third one exists in C.

(G2) Finite sums exist in C, in particular an initial object, and for any object in

C the quotient by a finite group of automorphisms exists.

(G3) Any morphism u in C can be written as u = u′u′′, where u′′ is an epimor-

phism and u′ a monomorphism. Moreover, any monomorphism u : X → Y

in C is an isomorphism of X with a direct summand of Y .

(G4) The functor F transforms terminal objects into terminal objects and com-

mutes with fibred products.
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(G5) The functor F commutes with finite sums, transforms epimorphisms into

epimorphisms, and commutes with passage to the quotient by a finite group

of automorphisms.

(G6) If u is a morphism in C such that F (u) is an isomorphism, then u is an

isomorphism. We call such a functor conservative.

Since Grothendieck first introduced these axioms category theorists have deep-

ened their understanding of category theory. In light of this deeper understand-

ing, we now have a simpler more concise expression of (some of) these axioms

in terms of (co)completeness and exactness properties of functors. In order to

make some of the axioms more concise we may restate them as follows (G1) C

is finitely complete (G4) F preserves finite limits, and (G6) F reflects isomor-

phisms. Francis Borceux’s Handbook of Categorical Algebra 1: Basic Category

Theory can be consulted for proofs that these restatements are equivalent than

the axioms of Grothendieck.

The next theorem is a theorem of Grothendieck. It characterises Galois cat-

egories and allows us to deduce a lot about finite étale morphisms simply from

the fact that they (together with a choice of geometric morphism) form a Galois

category. Grothendieck first proved this theorem in [22]. However, the version

stated here is from Hendrik Lenstra [1].

Theorem 4.31 (Grothendieck, SGA I). Let C be an essentially small Galois

category with fundamental functor F . Then we have:

(a) H : C→ Aut(F)− sets (defined below) is an equivalence of categories

(b) If π is a profinite group such that the categories C and π-sets are equivalent

by an equivalence that, when composed with the forgetful functor π-sets,

yields the functor F , then π is canonically isomorphic to Aut(F).

(c) If F ′ is a second fundamental functor on C, then F and F ′ are isomorphic
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(d) If π is a profinite group such that the categories C and π-sets are equiva-

lent, then there is an isomorphism of profinite groups π ∼= Aut(F) that is

canonically determined up to an inner automorphism of Aut(F).

Proof. For a proof of this theorem the reader may consult Grothendieck [22] or

Lenstra [1]. �

In the above theorem H : C→ Aut(F)− sets is defined in the same way as

the fundamental functor, except we remember the action by Aut(F) on the sets.

Since this theorem is stated in terms of a general Galois category, we will restate

a number of statements from the theorem in the context of finite étale morphisms

over a connected affine N-scheme. We will do this in the form of the following

corollaries of Theorem 4.31 of Grothendieck.

Corollary 4.32. If X is a connected affine N-scheme with two geometric points

i : p→ X and i′ : p′ → X, then πÉt
1 (X, p) ∼= πÉt

1 (X, p′).

Next we develop the idea of the rank of an étale morphism. Intuitively, for

a finite étale morphism f : Y → X and a geometric point i : p → X, the rank

corresponds to the size of the set Y ×X p i.e. size of the fiber. If X is connected,

this should be constant. This is a useful tool for proving a given morphism is not

finite étale — if different fibers have different sizes, then the morphism can’t be

finite étale.

Corollary 4.33. Let X be an affine N-scheme with geometric points i : p → X

and i′ : p′ → X and f : Y → X be a finite étale morphism such that Yp ∼=
∐

Np
p

and Yp′ ∼=
∐

Np′
p′. If X is a connected affine N-scheme, then Np

∼= Np′.

Proof. From each geometric point i, i′ we obtain fiber functors Fp and Fp′ . Prop-

erty (c) of Grothendieck’s theorem says Fp ∼= Fp′ . Therefore, there exists an

isomorphism Fp(Y ) ∼= Fp′(Y ). That is to say, the underlying morphism of finite

sets is an isomorphism. �
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With this result in hand we may define the degree of a finite étale morphism

over a connected affine N-scheme X. Inuitively speaking one should view the

degree of a finite étale morphism as the “number of sheets of the cover of X”.

We pick this out by looking at the “number of points in each fiber above a

(geometric morphism) point of the base X”. Precisely, we define it by pulling

back along a geometric morphism.

Definition 4.34 (Degree of Finite Étale Morphism). If X is a connected affine

N-scheme, i : p→ X is a geometric point of X, and Y is finite étale over X such

that Yp ∼=
∐

Np
p, then we define the degree of Y over X to be degX(Y ) := |Np|.

The degree of a finite étale morphism over a connected affine N-scheme X does

not depend on the choice of geometric point of X. This follows from Corollary

4.33 of Grothendieck’s theorem.

4.6 Special Case: Trivial Galois Group

The following theorem states that the triviality of the étale fundamental group

of an N-scheme X is equivalent to the fact that all finite étale morphisms over X

are globally totally split.

Theorem 4.35 (Trivial Galois Group). If X is a connected affine N-scheme and

i : p → X a geometric morphism of X, then π Ét
1 (X, p) = 0 if and only if each

finite étale N-scheme over X is totally split.

Proof. If π Ét
1 (X, p) = 0, then FEtX= sets, as the group action is trivial. Lemma

4.27 proves that each finite étale N-scheme over X is totally split. Lemma 4.27

also proves the opposite direction - Since the category is equivalent to sets, the

action of π Ét
1 (X, p) must be trivial on all objects i.e. the fundamental group

π Ét
1 (X, p) = 0 must be trivial.

�
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Notation: If X is a connected affine N-scheme with trivial étale fundamental

group, then we say X is simply connected. This is consistent with the notion of

a simply connected topological space as a topological space is simply connected

if and only if its fundamental group is trivial.

4.7 Main Theorem: FEtX is a Galois Category

In this section we prove all pairs (FEtX , p), for X a connected affine N-scheme

and p a geometric point of X form a Galois category. We will prove that each of

the six axioms of a Galois category hold one at a time.

Galois Category Axiom 1

Lemma 4.36 (FEtX Finitely Complete (G1)). If X is an affine N-scheme, then

FEtX is finitely complete.

Proof. In order to prove FEtX is finitely complete it suffices to prove (i) FEtX

has a terminal object, and (ii) fibred products exist in FEtX . It is clear that X

is the terminal object of FEtX , so we need only show that fibred products exist.

In order to determine whether or not the fibred product of two finite étale covers

over another is again finite étale we refer to the following diagram:

X

W

Y Y ×W Z

Z
fé

fé

fé

If W,Y, and Z are finite étale over an affine N-scheme X, then in order to prove

Y ×W Z is finite étale over X it suffices to prove Y → W equiv. Z → W are

finite étale; since compositions of finite étale morphisms are finite étale. Lemma

4.18 tells us that Y → W and Z → W are finite étale. Therefore Y ×W Z is finite

étale over X. It follows that the category of finite étale morphisms over a fixed

affine N-scheme X is finitely complete. �
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Galois Category Axiom 2

The initial object of FEtX is ∅ the empty scheme. Moreover finite sums in the

category of N-schemes correspond to the product of the corresponding semirings;

the product of finite étale morphisms are finite étale. Therefore, in order to prove

(G2) holds it remains to show quotients by finite groups of automorphisms exist

in FEtX .

Let us first consider the case that X =
∐

N Spec(R) for some N-algebra R

and G acts via permutations on the set N ; that is to say we might as well assume

G ≤ SN . Once we have dealt with this case we will reduce the general theorem to

this result. In the opposite category this case corresponds to taking the invariants

of the G action on RN ; where the action on N induces an action on the standard

idempotents e1, e2, . . . , en. We can partition the set of idempotents into the orbits

of the action of G. Moreover, the sum of all the elements in a given orbit is fixed

by the action of G. This fact allows us to describe the subalgebra of invariants

in the following manner: the morphism ϕ : (RN)G → RN/G, which maps an

element x =
∑

N riei ∈ (RN)G 7→
∑

N/G rieorb, where eorb(i) denotes the standard

idempotents of RN/G indexed by the orbits in N/G, is an isomorphism. Note

that since x ∈ (RN)G we know that ri = rj for each i, j ∈ orb(i). In particular,

the subalgebra of invariants is isomorphic to a finite number of copies of R i.e.

it is finite étale over R. To help get an understanding of what is going on, let us

consider an explicit example.

Example 4.37. Let X :=
∐

4 Spec(R) for some N-algebra, R. Moreover, let

G := {e, σ, θ, σθ} be a group of automorphisms of X which act on the set of 4

elements; here σ swaps 2 elements of the set with 4 elements and θ swaps the other

two. The following diagram gives a sketch representation of what is happening

to X under the action of these elements.
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Spec(R)

1

2

3

4

Spec(R)

{1, 2}

{3, 4}
σ

θ

On the left we see how the group G acts on X =
∐

4 Spec(R). The picture on the

right represents the quotient under the action of H where the equivalent branches

(elements of an orbit) have become equal; in particular, note that the quotient is

still totally split.

Lemma 4.38. If f : Y → X is a finite étale morphism and G ≤ Aut(Y ) is a

finite group of automorphisms of Y as an affine N-scheme over X, then Y/G is

finite étale over X.

Proof. Let (fi : Ui → X)i∈I be an fppf cover of X over which Y becomes totally

split. Lemma 4.17 allows us to assume that the automorphisms act as a subgroup

of the permutation group of the finite sets Ni, where Y ×X Ui ∼=
∐

Ni
Ui.

We will now prove that this same fppf cover of X suffices in trivializing Y/G.

Recall quotienting out by the action of a finite group is a finite colimit in the

category of affine N-schemes. Moreover, each Ui is flat over X thus pulling back

along each Ui preserves the finite colimit; that is to say Y/G×XUi ∼= (Y ×XUi)/G.

Furthermore, Y ×X Ui ∼=
∐

Ni
Ui, where the action of G is by a permutation of

the finite set Ni. It follows that Y/G×X Ui ∼=
∐

Ni/G
Ui. Thus Y/G is finite étale

over X, as required. �

Galois Category Axiom 3

If f : Y → Z is a morphism of finite étale covers of a fixed affine N-scheme X,

then we know there exists a cover (gi : Ui → X) and families (Ni)i∈I and (Mi)i∈I
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indexed by a set I over which Y ×X Ui ∼=
∐

Ni
Ui, Z ×X Ui ∼=

∐
Mi
Ui, and fi

is induced by the action of a set map f̃i : Ni → Mi. In the opposite category

of O(X)-algebras, this morphism decomposes as O(Z) → f ∗(O(Z)) → O(Y ),

where the left morphism f ′′ is a surjection (hence epimorphism) and f ′ is injective

(hence a monomorphism). In fact, f ∗(O(Z)) splits over the same fppf cover

of Ui and hence is finite étale over O(X). Precisely, we see the space split as

Spec(f ∗(O(Z))) ×X Ui ∼=
∐

f̃i(Ni)
Ui. Therefore, every morphism splits into an

epimorphism and monomorphism as required.

Furthermore, let us assume f is a monomorphism. Since f is a morphism

between finite étale covers of X, Lemma 4.18 shows us f itself is a finite étale

morphism. Therefore we have reduced to proving the following: if f : Y → X is an

monomorphism and a finite étale morphism, then it is necessarily an isomorphism

of Y with a direct summand of X. In the opposite category we know there exists

an fppf cocover (g∗i : O(X) → Ci)i∈I over which O(Y ) becomes totally split.

Pulling f ∗ back along each of these morphisms yields an epimorphism Ci → CNi
i .

Lemma 4.39. If R → RN is an epimorphic R-algebra morphism, then N is

either (i) the empty set ∅, or (ii) a singleton {∅}.

Proof. If N is not one of the claimed sets, then RN has non-trivial automorphisms

which fix R. This contradicts the property of being an epimorphism, thus N must

have at most one element. �

Lemma 4.39 implies that f ∗ is fppf locally an idempotent projection and

hence that f is fppf locally an idempotent immersion. Lemma ?? allows us to

conclude that f itself must be an idempotent immersion. Therefore we see that

all monomorphisms f : Y → Z of finite étale morphisms are in fact isomorphisms

of Y with a direct summand of Z. Thus the category FEtX does satisfy axiom

(G3) of a Galois category.

Galois Category Axiom 4
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The fundamental functor is the composition of the functors: − ×X p, where

p is a geometric point, and an equivalence of categories FEtp ∼= sets. There-

fore it corresponds to the fibred product. Since fibered products commute with

fibered products we know that the fundamental functor will commute with fibered

products. In order to satisfy (G4) the fundamental functor must also send

the terminal object to the terminal object in set; however, this is true because

Spec(R) ×Spec(R) Spec(k) ∼= Spec(k) which is the terminal object in FEtSpec(k).

This is also true if the geometric point is Spec(B). Note that the equivalence

of categories that is composed with this pull-back must send terminal objects to

terminal objects.

Galois Category Axiom 5

Since the tensor product commutes with finite products of N-algebras we know

that the fundamental functor will commute with finite sums of finite étale covers.

If h : Y → Z is an epimorphism of finite étale covers of X, we know that there

must be a cover (fi : Ui → X)i∈I over which Y and Z split. Moreover we may

assume h is trivial over this cover i.e. given by a set map. Since the cover is flat,

pulling back along it preserves epimorphisms, therefore hi is still an epimorphism

and hence so is the corresponding map of sets.

In order to prove that the fundamental functor commutes with passage to

quotient by the action of a finite group G of automorphisms of a finite étale cover

Y → X, it suffices to prove that passage to such a quotient commutes with any

pull back. We will prove that this is true when Y =
∐

N X and reduce the general

case to this totally split instance.

Lemma 4.40. If X = Spec(R) and Z = Spec(A) are affine N-schemes, N is a

finite set, g :
∐

N X → X is the codiagonal map and h : Z → X is a morphism

of affine N-schemes, and G is a finite group of automorphisms which acts via

permutation of N , then the natural map (
∐

N X ×X Z)/G→ (
∐

N X)/G×X Z is

an isomorphism.
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Proof. In the opposite category the morphism in the statement of the lemma f :

(
∐

N X×X Z)/G→ (
∐

N X)/G×X Z is given by f ∗ : (RN)G⊗RA→ (RN⊗RA)G

where (ri)i∈N ⊗ a 7→ (ri)i∈N ⊗ a. This is well defined as the action of G on

(RN ⊗RA)G is only on the RN components of the tensors. In order to prove that

this is an isomorphism we will do the following (i) construct maps α, β, γ, δ as

shown in the pentagon below (ii) prove this pentagon commutes (iii) show each

of α, β, γ, δ to be isomorphisms. This will allow us to conclude that f ∗ must also

be an isomorphism, as the commutativity will give βα = δγf ∗ while the fact

that α, β, γ, δ are all isomorphisms allows us to conclude f ∗ = γ−1δ−1βα is an

isomorphism. ∏
N/GA

(
∏

N A)G

(
∏

N R⊗R A)G(
∏

N R)G ⊗R A

∏
N/GR⊗R A

f ∗

γα

β δ

When defining these morphisms we use denote the orbit of j ∈ N under the

action of G as orb(j) in the quotient N/G. With this notation we define the

morphisms of the pentagon as follows.

α : (ri)i∈N ⊗ a 7→ (ri)orb(i)∈N/G ⊗ a

β : (rorb(i))orb(i)∈N/G ⊗ a 7→ (rorb(i)a)orb(i)∈N/G

γ : (ri)i∈N ⊗ a 7→ (ria)i∈N

δ : (ai)i∈N 7→ (ai)orb(i)∈N/G

First we must say why α and δ are in fact well-defined; in particular, if it is the

case that orb(i) = orb(j), why is it that ri = rj in R? and similarly for δ and A.



94 CHAPTER 4. FINITE ÉTALE MORPHISMS

This is necessarily true as α and δ are defined as maps out of the sub-algebra of

invariants under the action of G. Thus, if the ith component of an element (ri)

is mapped to the jth, then the ri = rj, else the element would not be invariant

under the action. We have given the action of morphisms out of a tensor product

only on the elementary tensors. The full definition is the linear extension to non-

elementary tensors. In order to see that this diagram commutes we first calculate

the image of the following elementary tensor βα((ri)i∈N⊗a) = (rorb(i)a)orb(i)∈N/G.

Starting from (
∏

N R)G⊗R A and following the morphisms in the other direction

yields δγf ∗((ri)i∈N ⊗ a) = δγ((ri)i∈N ⊗ a) = (rorb(i)a)orb(i)∈N/G. Thus we see that

this diagram does commute i.e. βα = δγf ∗. It remains to prove each of these

morphisms are in fact isomorphisms.

First we note that α and δ are isomorphisms because they are induced by

the isomorphism (RN)G ∼= RN/G that we deduced leading up to Lemma 4.38.

On the other hand β and γ are isomorphisms because they are induced by the

isomorphism ofR-algebras
∏

S R⊗RA ∼=
∏

S A which sends (rs)s∈S⊗a 7→ (ars)s∈S.

Therefore α, β, γ, δ are each isomorphisms and as a result we may conclude that

f ∗ is also an isomorphism. �

It remains to reduce the global case to this totally split theorem. However,

this follows from the fact that Y is flat locally totally split. Since the pull back to

the totally split case is a flat pull back it commutes with passage to the quotient

by a finite group of automorphisms — pull back along flat morphisms commute

with all finite colimits. Lemma 4.40 proves f is flat locally an isomorphism and

hence that f itself must be an isomorphism.

Galois Category Axiom 6

Let X = Spec(R) be an N-scheme, with f : Y → Z a morphism of finite

étale morphisms over X, and (gi : Ui → X)i∈I be an fppf cover of X over which

Y ×X Ui ∼=
∐

Ni
Ui and Z ×X Ui ∼=

∐
Mi
Ui, for some finite sets Ni and Mi and

Si := Homsets(Ni,Mi). Lemma 4.17 allows us to give, for each i ∈ I, a family

(Eα → Ui)α∈Si such that we have Ui ∼=
∐

α∈Si Eα.
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Ui

∐
Ni
Ui

∐
Mi
Ui Eα

∐
Ni
Eα

∐
Mi
Eα

X

ZY

f

f

f

Finally, we saw that f and the map induced by α become equal when pull-

backed to each Eα. Now we observe that f is an isomorphism over Eα if and only

if α : Ni →Mi is a bijection on sets. With this observation we make the following

definition

Isom(fi) :=
∐
α∈Bij

Eα,

where Bij⊆ Hom(Ni,Mi) is the subset of bijections of sets Ni → Mi. We refer

to each Isom(fi) as the isomorphism locus of f in Ui. Similarly, we make the

definition

¬Isom(fi) :=
∐
α/∈Bij

Eα.

If ¬Isom(fi) = ∅, then fi will be an isomorphism when pulled back to it, otherwise

we can think of this as the locus in Ui over which fi is not an isomorphism.

In order to complete the this construction, we will employ the machinery

of faithfully flat descent of modules, which we will not review here. One can

refer to [9, 10] for discussions on faithfully flat descent for modules of rings and

semirings, respectively. We have constructed an isomorphism locus for each fi

locally, in order to complete our proof we need to show that this construction

descends to X. Since each Isom(fi) is constructed out of the Ei
α (Note we have

introduced the superscript i ∈ I to keep track of the Ui in which Ei
α and Isom(fi)

is in), it suffices to prove that each of these descend to X. As these Ei
α → Ui

are subobjects of Ui, the condition for descent to X is that their construction is

stable under refinement of the cover (Ui → X)i∈I . We do not need to check a
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cocycle condition when glueing subobjects, as there is only one way they can be

isomorphic. For each i ∈ I and α ∈ Homsets(Ni,Mi) the affine N-scheme Ei
α is

the equalizer of the following diagram

Ui
∏

M
Ni
i
Ui. (†)Ei

α

f

iβ

Over the refinement of the cover Uij := Ui ×X Uj we can perfom the analogous

construction

Uij
∏

M
Ni
i
Uij. (?)Eij

α

f

iβ

Now we need to prove Ei
α×UiUij ∼= Eij

α . Notice that the second diagram (?) can be

obtained from (†) by a flat base change along the morphism Uij → Ui. Therefore

the isomorphism follows from the fact that these objects are constructed as limits

and Uij → Ui is flat morphism of affine N-schemes and therefore must preserve

the limits. Thus the conditions for descent are satisfied. In conclusion we know

that for a given morphism f : Y → Z of finite étale N-schemes over X, there

are subobjects Isom(f) and ¬Isom(f) of X such that X = Isom(f)
∐
¬Isom(f).

Furthermore, when pulled back along Isom(f) → X, the given morphism f be-

comes an isomorphism. Now if we assume X is connected, we know one of these

components must in fact be empty. Furthermore, under the assumption f is

an isomorphism at a geometric point (i.e. after applying the fundamental func-

tor) we conclude i : p → X must factor through Isom(f), else it would factor

through ¬Isom(f) and hence f would not become an isomorphism over p. There-

fore ¬Isom(f) = ∅ and X ∼= Isom(f). We see the fundamental functor reflects

isomorphisms of finite étale covers over a connected affine N-scheme.

Theorem 4.41 (FEtX is Galois). If X is a connected affine N-scheme, p is a

geometric point of X, and F : FEtX→ sets is the fundamental functor derived

from p, then the pair (FEtX , F ) is a Galois category.
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Proof. The proof of this theorem is the content of the present section under the

headings Galois Category Axiom 1 - 6. �

Corollary 4.42. If X is a connected affine N-scheme with two geometric points

i : p→ X and i′ : p′ → X, then πÉt
1 (X, p) ∼= πÉt

1 (X, p′).

Proof. This follows from the theorem of Grothendieck presented in this thesis as

Theorem 4.31. �



Chapter 5

Calculating the Étale

Fundamental Group

In this final chapter of the thesis we calculate the étale fundamental group of a

number of affine N-schemes. We will calculate the étale fundamental group of

the following N-schemes; Spec(B), Spec(R+), and Spec(N). Note these are all

connected, so these calculations will be independent of choice of base point. We

will also calculate the étale fundamental group of Spec(E)p+ and Spec(E++) for

each real number field E/Q and each p ∈ HomAlgQ(E,R). We use the fact that the

étale fundamental group of an N-scheme, X, classifies the N-schemes finite étale

over X in order to calculate the group. Indeed, we give explicit characterisations

of the finite étale morphisms over each of these N-schemes and deduce the étale

fundamental group from that characterisation.

Following Remark 4.5 we observe that the choice of topology may change the

notion of finite étale and hence change the resulting étale fundamental group.

It is worth noting that due to the nature of the calculations below, none of the

results obtained are dependent upon this choice of topology. We find that all étale

fundamental groups are trivial in the flat topology and hence must be trivial in

the coarser fpqc and fppf topologies. Therefore the results of this section are

independent of the open question in Remark 4.5.

98
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5.1 Boolean Semiring: B

In Example 4.20 we proved every finite étale morphism over Spec(B) is of the

form
∐

N Spec(B) for some finite set N . Theorem 4.35 allows us to conclude

πÉt
1 (Spec(B)) = 0.

Theorem 5.1 (Étale Fundamental Group of B). If A is a finite étale B-

algebra, then there exists a finite set N := N(A) such that A ∼=
∏

N B i.e.

πÉt
1 (Spec(B), p) = 0 for the unique (up to unique isomorphism) geometric point p

of Spec(B).

In some sense the remainder of our calculations will rely on this fact. We

discuss a possible reason for this in the following remark.

Remark 5.2. In his paper Finite Extensions of Zmax [42] Jeffery Tolliver shows

that there are no finite intermediate semifield extensions between B and Zmax.

This result is of a similar flavour to Theorem 5.1, as one might expect that any

non-trivial finite extension of semifields should be a finite étale algebra.

Furthermore, it is shown (Corollary 3.9 of [42]) that there is an infinite family

of intermediate finite extensions between Zmax ⊆ Rmax. It has yet to be deter-

mined whether these extensions are finite étale in the sense of the present thesis.

The remainder of this chapter will show that finite extensions of semifields need

not be finite étale algebras, as one might expect from ring theory. So determin-

ing whether Tolliver’s finite extensions of Zmax are finite étale is an interesting

question that should be pursued.

Remark 5.3 (Hensel’s Lemma at the∞ Place). Remark 4.28 considers extending

Hensel’s analogy between p-adic numbers and functions of one complex variable

(Riemann surfaces). To put this in more concrete terms we would like to con-

sider the consequences of the suggestion that the ∞-adic integers are defined

to be Z∞ := R+ and the residue field at infinity, F∞ := B. In particular, we

could wonder how Hensel’s lemma extends to the infinite place. Hensel’s lemma

characterises the conditions under which zeroes of polynomials in Zp[x] can be
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lifted from zeroes of the polynomials when reduced modulo p i.e. lifted from

solutions to the corresponding polynomial in Fp[x]. Extending this to the infinite

place with our definitions one might wonder when solutions to equations of the

form f(x) = g(x) for f, g ∈ R+[x] can be lifted from the corresponding equations

f(x) = g(x) where f, g are the image of f, g in B[x].

Determining whether an algebra is totally split is equivalent to finding an or-

thonormal family of idempotents (finite orthogonal family which sums to unity)

in the algebra. Idempotents are simply solutions to the equation x2 = x. There-

fore if one wishes to determine whether or not an algebra is finite étale over e.g.

R+ it may be enough to lift idempotents from the base change to B. Indeed, this

is how our calculations below work in practise. In this way, we see that, to some

extent, Hensel’s lemma does extend to ∞ with our definitions; at least to the

extent that we can lift idempotents i.e. solutions to x2 = x.

5.2 Subalgebras of Real Number Fields

In this section we prove the étale fundamental group of Spec(E)p+ and Spec(E++)

are trivial, for E/Q a real number field and each p ∈ HomAlgQ(E,R). Our strategy

for these N-algebras is to the use the fact (Lemma 4.8) that the property of being

finite étale is stable under base change and therefore that AB is finite étale over B

whenever A is finite étale over an N-algebra with a B point. Explicitly, since AB

is finite étale over B it is totally split. Inspired by Hensel’s lemma we will prove

that we can lift the idempotents of AB to A and thus prove A is totally split.

Given a totally real number field E over Q (including Q itself) we can form the

following diagram, which we will reference frequently throughout this chapter.
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(?)

AB

A AEp+ AE AC

E++

B
Ep

+ E C

Q+

fé

Note in the case E = Q the diagram (?) simplifies as Q+ = Q++. If A is

assumed to be finite étale over E++, then all of the base changes in (?) are also

finite étale over their respective bases. Since AB is finite étale over B, we know

AB ∼= BN for some finite set N . We will prove that all such A are in fact totally

split, and will do some by lifting the idempotents from AB to A.

In this section let us fix a finite étale algebra f : E++ → A, where f is the

morphism E++ → A in (?). We will prove A ∼= EN
++, for some finite set N . In

order to do so we require a few observations relating to the information in (?).

First, since E++ is a subalgebra of E, we know (by the flatness of A) that A is

a subalgebra of AE. Moreover, since AE is finite étale over E (a field) we know

AE ∼=
∏

M Ei for i in some finite set M and Ei : E finite separable extensions of E.

On the other hand we can consider the base change AB which is finite étale over B.

Theorem 5.1 tells us AB ∼= BN , for some finite set N . Let us denote the “standard

basis vectors” of BN by ei. Following Remark 5.3 we hope to lift these idempotents

(ei)i∈N ⊆ AB to A. Since the morphism ψ : A → AB is the base change of a

surjective morphism, it is surjective. Moreover, Lemma 2.97 tells us the preimage

ψ−1(0) = {0}. Let us choose a lift ẽi ∈ A for each ei ∈ AB. First, let us determine

that the ẽi are mutually orthogonal; ψ(ẽiẽj) = ψ(ẽi)ψ(ẽj) = eiej = 0, for i 6= j.

Since the preimage ψ−1(0) = {0}, it follows ẽiẽj = 0. We conclude A contains a

family (ẽi)i∈N of mutually orthogonal elements.

To summarise, we have so far deduced A is a subalgebra of AE ∼=
∏

M Ei with

N non-zero mutually orthogonal elements. Next we show A contains N mutually

orthogonal idempotents. The following lemma proves this is a consequence of a
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more general result.

Lemma 5.4. Let D be an integral domain and T be a finite set indexing a family

of non-zero elements (fα)α∈T in DN , for some finite set N . If fαi denotes the ith

component of fα, then let Sα := {j ∈ N | fαj 6= 0}. If α 6= β ∈ T and fαfβ = 0,

then Sα ∩ Sβ = ∅. Furthermore, if |T | = |N |, then ∀α ∈ T |Sα| = 1.

Proof. Fix an α ∈ S. Since fα 6= 0, there exists a j ∈ N such that fαj 6= 0 i.e.

Sα 6= ∅. For each β 6= α, fαfβ = 0, which implies, for each β 6= α, fαj f
β
j = 0 ∈ D

— as D is an integral domain, we may conclude for each β 6= α and j ∈ Sα,

fβj = 0 — which means Sα ∩ Sβ = ∅.

Since Sα ∩ Sβ = ∅ we know | ∪α Sα| =
∑

α |Sα| and |N | ≥ | ∪α Sα|. Piecing

these facts together proves |N | ≥ | ∪α Sα| =
∑

α |Sα| ≥ |T |. Therefore, under the

assumption |N | = |T |, we may conclude
∑

α |Sα| = |T | and hence ∀α ∈ T

|Sα| = 1. �

This implies that each fα is supported in precisely one component. Hence

each fα lies on one of the axes in DN . This is summarised in the following

corollary.

Corollary 5.5. If D, T , N , (fα)α∈T are as in Lemma 5.4, and |N | = |T |, then

∀α ∈ T ∃i ∈ N and di ∈ D such that fα = diei where ei is the ith standard

idempotent of DN .

Corollary 5.5 allows us to conclude the lifts ẽi ∈ A are of the form ẽi = diei,

where (ei)i∈N ⊆
∏

M Ei are N of the standard basis vectors and di ∈ Ei. In

particular we note |N | ≤ |M |. On the other hand AC = (
∏

M Ei) ⊗E C ∼=

C
∑
M [Ei:E]. Since E is connected Corollary 4.33 implies |N | =

∑
M [Ei : E]. Since

|N | ≤ |M | and |N | =
∑

M [Ei : E] we know ∀i ∈ M [Ei : E] = 1 and |N | = |M |.

So we have A ⊆
∏

N E with |N | elements ẽi = diei positioned on the N axes.

In general the di ∈ E, but d2
i ∈ E++. It follows for each i ∈ N since we know

1
d2i
ẽi

2 ∈ A. We may conclude each of the following elements 1
d2i
ẽi

2 =
d2i ei

2

d2i
= ei ∈ A.

Since A is an E++ algebra, the existence of the idempotents ei ∈ A implies there
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is a morphism i : EN
++ ↪→ A. Note: this is a morphism of algebras finite étale over

E++. Thus we may check whether or not it is an isomorphism after pulling back

to the point C — this is axiom (G6) of the axioms of a Galois category. After

pulling back to C we obtain an injective (by axiom (G5) of a Galois category)

morphism iC : CN ↪→ CN of finite dimensional vector spaces. Consequently iC is

an isomorphism of vector spaces and therefore the original morphism i must in

fact be an isomorphism. In conclusion, all algebras f : E++ → A which are finite

étale are of the form A ∼=
∏

N E++ for some finite set N .

Theorem 5.6 (Étale Fundamental Group of E++). If E : Q is a real finite

Galois extension and A is a finite étale E++-algebra, then there exists a finite

set N := N(A) such that A ∼=
∏

N E++ i.e the étale fundamental group is

πÉt
1 (Spec(E++), p) = 0 for each geometric point p of Spec(E++).

Furthermore, we can swap Ep
+ for E++ in this argument to obtain the following

theorem.

Theorem 5.7 (Étale Fundamental Group of E+). If E : Q is a real finite Galois

extension, q : E → R is a morphism of N-algebras, and A is a finite étale Eq
+-

algebra, then there exists a finite set N := N(A) such that A ∼=
∏

N E
q
+ i.e. the

étale fundamental group is πÉt
1 (Spec(E)q+, p) = 0 for each geometric point p of

Spec(E)q+.

It should be noted that Theorem 5.6 and Theorem 5.7 might highlight a weak-

ness in this theory of the étale fundamental group for N-schemes. The passage

from E to Ep
+ and E++ annhilate the entire absolute Galois group Gal(E). This

idea is disucussed at the end of the thesis in Section 5.5.

5.3 Positive Real Numbers: R+

We may adapt the diagram (?) given in the previous section to see that the entire

argument (with small changes) holds in the case of algebras finite étale over R+.
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(?)

AB A AR AC

R+B R C

féfé fé fé

The Boolean and complex point interact in the same manner to prove A ⊆ RN ,

where N is the rank of the finite étale algebra A. Similarly, the idempotents lift

to orthogonal elements which we scale to prove there is an injective morphism

i : RN
+ ↪→ A. Which we show is an isomorphism over C, thus is itself an isomor-

phism.

Theorem 5.8 (Étale Fundamental Group of R+). If A is a finite étale R+-

algebra, then there exists a finite set N := N(A) such that A ∼=
∏

N R+ i.e. the

étale fundamental group is πÉt
1 (Spec(R+), p) = 0 for each geometric point p of

Spec(R+).

Remark 5.9. This method generalizes (at least) to zerosum free semifields. Ev-

ery zerosum free semifield lives inside an (algebraically closed) field and has a

map to B; thus the argument given for R+ above can be used for these types of

semirings.

5.4 The Natural Numbers: N

In order to calculate the étale fundamental group of the natural numbers, we

use the following diagram to develop a geometric heuristic for how the argument

should be laid out. The natural numbers N are the pull back of the following

diagram:

Z

R+R

In other words N = Z ×R R+. Geometrically speaking, this diagram is more

illuminating
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Spec(Z) Spec(N)

Spec(R+)Spec(R)

As it is now clear that Spec(N) can be constructed by glueing Spec(Z) and

Spec(R+) along their common “subscheme” Spec(R). This heuristic suggests

Spec(N) is the result of glueing two “simply connected” spaces (Spec(Z) and

Spec(R+) have trivial (étale) fundamental group) along a connected (Spec(R) is

connected) subspace. In algebraic topology such a construction must necessarily

be simply connected i.e. we should expect N to have trivial étale fundamental

group.

Theorem 5.10 (Étale Fundamental Group of N). If A is a finite étale N-algebra,

then there exists a finite set N := N(A) such that A ∼=
∏

N N and hence

πÉt
1 (Spec(N), p) = 0 for each geometric point p of Spec(N).

Proof. Let f : N → A be a finite étale algebra. Recall the natural numbers can

be presented as the following finite limit N = Z×R R+. We can use the flatness

of A over N to give the following presentation of A:

A ∼= N⊗N A

∼= (Z×R R+)⊗N A

∼= (Z⊗N A)×(R⊗NA) (R+ ⊗N A) (?)

We use the flatness of A in distributing the tensor product over the finite limit

presentation of N. Since Z and R+ are simply connected, we know Z⊗N A = ZT

and R+ ⊗N A = RS
+. In fact, Corollary 4.33 allows us to conclude there is a

bijection ϕ : S → T . Also, by extending scalars one sees R⊗NA ∼= RT . Plugging

this into (?) yields

A = ZT ×RT RT
+

which is naturally isomorphic to A = NT . Therefore each finite étale N-algebra

is a finite product of copies of N. �
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5.5 Searching for a Non-Trivial Example

All of our calculations have so far yielded only N-schemes with trivial étale fun-

damental group. In this section we discuss some reasons for this and where we

might be able to find an N-scheme (which is not an affine Z-scheme) which has

a non-trivial finite étale cover and hence a non-trivial étale fundamental group.

In Example 3.20 of Chapter 3 we introduced the positive cone of an affine

N-scheme X with a real point p ∈ X(R) — recall that this scheme over X is

constructed by glueing the positive real numbers to X at a real point. We denote

this affine N-scheme X+
p . This generalized the construction of Spec(N) from

Spec(Z) and Spec(E+) from Spec(E), where E : Q is a totally real finite separable

extension of Q. When we constructed the positive cone over Spec(Q), Spec(E),

and Spec(R) we obtained a simply connected affine N-scheme. Notice each of

these affine N-schemes originally have non-trivial étale fundamental group, but

when we attached the positive reals (the Booelan point) to the chosen real point

of these schemes, the result is a simply connected affine N-scheme. It is interesting

to consider how general this behaviour might be. So far we have only considered

schemes of dimension 0, as well as the 1 dimensional scheme Spec(Z). In order

to see if this phenomena generalizes, we should first consider what happens to

schemes of higher dimension.

It is certainly not true that all semirings have trivial étale fundamental group,

as there are many rings (which are semirings) which have non-trivial étale funda-

mental group. One might then ask if all non-ring semirings have only trivial finite

étale morphisms? Theorem 3.9 tells us this is equivalent to asking if every semi-

ring with a morphism to the Booleans has only trivial étale finite étale morphisms.

Again examples like A := R×B tell us this is not true, as the non-triviality of the

finite étale morphisms of R will give non-trivial finite étale morphisms over A.

What about if we restrict to connected semirings? Even then one could imagine

glueing A1
R and (A1

R)q+ at a common point p ∈ A1
R which is different from q and

obtaining non-trivial finite étale morphisms from the A1
R component. Let us say
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an affine N-scheme X = Spec(A) is integral if A has no zero divisors.

Question: Does there exist an integral affine N-scheme X which satisfies the

following conditions (i) X(B) 6= ∅ and (ii) πÉt
1 (X, p) 6= 0?

Unfortunately an answer to this question could not be given before the dead-

line of the thesis.



Chapter 6

Concluding Remarks

In this chapter we will discuss some of the possible geometric interpretations for

the phenomena observed in the calculations of the previous chapter and a number

of possible directions for future research into the arithmetic algebraic geometry

of N and algebras over N.

Attaching Positivity Information and Higher Homotopy Theory

It seems that the passage to the positive cone annihilates information in the

étale fundamental group — the highly non-trivial fundamental group of Spec(Q)

becomes the trivial fundamental group of Spec(Q+). In algebraic topology this

behaviour is often observed when glueing spaces together. However, there are

often residual effects in the higher homotopy groups of the spaces that are being

glued together. This phenomena suggests that in order for us to obtain a better

understanding of the consequences of glueing Spec(R+) and Spec(B) to schemes

with real points, we should consider not just the étale fundamental group, but the

higher homotopy groups of the N-schemes. Micheal Artin and Barry Mazur have

developed a theory of higher homotopy types of schemes [3]. Eric Friedlander

has also given another approach to this idea [18]. All of this suggests that one

of the next steps in this program should be to consider their work in the broader

context of N-schemes and calculate the higher homotomopy groups of the affine

N-schemes considered in Chapter 5.

108
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What would this require? The work of Artin-Mazur requires the full theory of

schemes, so we would have to say what we mean by a non-affine N-scheme; glue-

ing affine N-schemes together with particular topology, and considering functors

which are locally affine in the same topology. We have already remarked that

the flat topology is not appropriate for this work, as sheaves on the flat site are

not well-behaved. In particular the flat topology is not subcanonical. Moreover,

Artin-Mazur require not only require the notion of finite étale, but étale as well.

Thus this more general notion would need to be developed in the broader context.

Perhaps it is the definition suggested by Connes in Remark 4.4 that would be the

appropriate definition of étale for such an étale topology.

Different Definition of Finite Étale?

In light of the fact that the étale fundamental group of a number field E/Q

is annhilated when passing to either E+ for some point p, or E++, one might

wonder whether the definition of finite étale that we gave is incorrect. It seems

like an honest generalization of Grothendieck’s definition, but perhaps we need a

broader category of objects in order to encapsulate all of the behaviour of these

positive completions. Or not, perhaps this is the “proper behaviour” of these

affine N-schemes.

It was mentioned earlier in Remark 4.4 that Alain Connes has suggested that

a morphism f : R→ A should be said to be étale if both f and ∆ : A⊗R A→ A

are flat. I am not sure if this (+ the necessary finite generation as an R-module

condition) is equivalent to the definition of finite étale that is given in this thesis.

Perhaps the category of such objects is strictly larger and hence has non-trivial

objects. This would imply the corresponding étale fundamental group is in fact

non-trivial. It would be interesting to know if this is true. Or if the correct

definition of finite étale should be something else altogether. Further research

will be done to answer this question.

The Geometry of p-adic Numbers and the Boolean Point
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In Remark ?? we suggested Spec(N) behaves like it is the compactification

of Spec(Z). In particular, we used the analogy of Weil’s Rosetta stone to sug-

gest that Spec(Z) is missing a point and that Spec(N) has that missing point.

Moreover, we noticed, with further comment in Remark 4.28, that extending the

theory of schemes to the category of semirings adds precisely one more point ;

precisely, Spec(B) is the only geometric point of Spec(N) which does not come

from Spec(Z). This idea suggests the centrality of Spec(B) in the geometry of

semirings (including rings) and therefore we should consider its relation to the

rest of the category of N-schemes in the future.

In particular the narrative of this analogy suggests that the Booleans behave

a lot like F∞; that is, in a manner similar to the relationship between Fp and

Zp ⊆ Qp. Research along these lines will help elucidate the extent to which

this analogy should be taken seriously. For example, one might consider the

relationship between B and R+. In order to calculate the étale fundamental

group of Spec(R+) we lifted idempotents from B to R+; this could be considered

similar to the way one can lift solutions from Fp to Zp. From this suggestion we

make the following denotation; F∞ := B and Z∞ := R+. Research should be

carried to test this analogy; results at the finite primes should be considered in

this context of the infinite prime. Q: to what extent does Hensel’s Lifting Lemma

extend to this context? We can lift idempotents, but can we lift solutions to other

equations? Q: the ring of p-adic numbers can be obtained from the finite field

Fp by an application of the p-typical Witt vector functor; is there a “natural”

manner in which we can define an∞-typical Witt vector functor which constructs

R+ out B? Alternatively, is there a natural way to piece together B, R+, and R

in a manner similar to the relationship between Fp, Zp, and Qp?
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Astérisque 369 (2015).

[8] Borceux, F. Handbook of Categorical Algebra 1. Cambridge University

Press, 1994.

[9] Borceux, F. Handbook of Categorical Algebra 2. Cambridge University

Press, 1995.

111



112 BIBLIOGRAPHY

[10] Borger, J. Witt vectors, semirings, and total positivity. Absolute Arith-

metic and F1 Geometry. EMS Publishing House (2016).

[11] Borger, J., and Grinberg, D. Boolean Witt vectors and an integral

Edrei-Thoma theorem. Selecta Mathematica (2016), pp 595–629.

[12] Bunge, M. Galois Groupoids and Covering Morphisms in Topos Theory.

Fields Institute Communications 43, AMS (2004).

[13] Bunge, M., and Moerdijk, I. On the Construction of the Grothendieck

Fundamental Group of a Topos by Paths. Journal of Pure and Applied

Algebra (1996).

[14] Caramello, O. Topological Galois Theory. Advances in Mathematics 291

(2016), pp 646–695.

[15] Connes, A., and Consani, C. The arithmetic site. Comptes Rendus

Mathematique Volume 352, Issue 12 (2014), pp 971–975.

[16] Connes, A., and Consani, C. Geometry of the Arithmetic Site. Advances

in Mathematics 291 (2016), pp 274–329.

[17] Connes, A., and Consani, C. The Scaling Site. Comptes Rendus Math-

ematique. Volume 354, Issue 1 (2016), pp 1–6.

[18] Friedlander, E. M. Etale Homotopy of Simplicial Schemes. Princeton

University Press, 1982.

[19] Giansiracusa, J., and Giansiracusa, N. Equations of tropical varieties.

Duke Mathematical Journal (2016), 3379–3433.

[20] Golan, J. S. Semirings and their Applications. Kluwer Academic Publish-

ers, 1999.



BIBLIOGRAPHY 113

[21] Grothendieck, A. Lecture Notes: Introduction to Functorial Algebraic

Geometry. Summer School in Buffalo. Lecture notes written by Frederico

Gaeta.

[22] Grothendieck, A. Revêtements étales et groupe fondamental (SGA 1),

vol. 224 of Lecture notes in mathematics. Springer-Verlag, 1971.

[23] Grothendieck, A., and Dieudonn, J. Éléments de géométrie algébrique
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